A118441 Triangle L, read by rows, equal to the matrix log of A118435, with the property that L^2 consists of a single diagonal (two rows down from the main diagonal).
0, 1, 0, -4, 2, 0, -12, 12, 3, 0, 32, -48, -24, 4, 0, 80, -160, -120, 40, 5, 0, -192, 480, 480, -240, -60, 6, 0, -448, 1344, 1680, -1120, -420, 84, 7, 0, 1024, -3584, -5376, 4480, 2240, -672, -112, 8, 0, 2304, -9216, -16128, 16128, 10080, -4032, -1008, 144, 9, 0
Offset: 0
Examples
The matrix log, L = log(H*[C^-1]*H], begins: 0; 1, 0; -4, 2, 0; -12, 12, 3, 0; 32, -48, -24, 4, 0; 80, -160, -120, 40, 5, 0; -192, 480, 480, -240, -60, 6, 0; -448, 1344, 1680, -1120, -420, 84, 7, 0; 1024, -3584, -5376, 4480, 2240, -672, -112, 8, 0; 2304, -9216, -16128, 16128, 10080, -4032, -1008, 144, 9, 0; ... The matrix square, L^2, is a single diagonal: 0; 0, 0; 2, 0, 0; 0, 6, 0, 0; 0, 0, 12, 0, 0; 0, 0, 0, 20, 0, 0; 0, 0, 0, 0, 30, 0, 0; ... From _Peter Luschny_, Apr 23 2020: (Start) In unsigned form and without the main diagonal, as computed by the Maple script: [0], [0] [1], [1] [2], [4, 2] [3], [12, 12, 3] [4], [32, 48, 24, 4] [5], [80, 160, 120, 40, 5] [6], [192, 480, 480, 240, 60, 6] [7], [448, 1344, 1680, 1120, 420, 84, 7] (End)
Crossrefs
Programs
-
Maple
# Generalized Worpitzky transform of the harmonic numbers. CL := p -> PolynomialTools:-CoefficientList(expand(p), x): H := n -> add(1/k, k=1..n): Trow := proc(n) local k,v; if n=0 then return [0] fi; add(add((-1)^(n-v)*binomial(k,v)*H(k)*(-x+v-1)^n, v=0..k), k=0..n); CL(%) end: for n from 0 to 7 do Trow(n) od; # Peter Luschny, Apr 23 2020
-
Mathematica
nmax = 12; h[n_, k_] := Binomial[n, k]*(-1)^(Quotient[n+1, 2] - Quotient[k, 2]+n-k); H = Table[h[n, k], {n, 0, nmax}, {k, 0, nmax}]; Cn = Table[Binomial[n, k], {n, 0, nmax}, {k, 0, nmax}]; L = MatrixLog[H.Inverse[Cn].H ]; Table[L[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2024 *)
-
PARI
/* From definition of L as matrix log of H*C^-1*H: */ {L(n,k)=local(H=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1)*(-1)^(r\2-(c-1)\2+r-c))),C=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1))),N=(H*C^-1*H)); Log=sum(p=1,n+1,-(N^0-N)^p/p);Log[n+1,k+1]} for(n=0, 10, for(k=0, n, print1(L(n, k), ", ")); print(""))
-
PARI
/* The matrix power L^m is given by: */ {L(n,k,m)=if(m%2==0,if(n==k+m,n!/k!*2^(n-k-m)/(n-k-m)!), if(n>=k+m,n!/k!*2^(n-k-m)/(n-k-m)!*(-1)^(m\2+(n+1)\2-k\2+n-k)))} for(n=0, 10, for(k=0, n, print1(L(n, k,1), ", ")); print(""))
Formula
For even exponents of L, L^(2m) is a single diagonal:
if n == k+2m, then [L^(2m)](n,k) = n!/k!*2^(n-k-2m)/(n-k-2m)!; else if n != k+2m: [L^(2m)](n,k) = 0.
For odd exponents of L:
if n >= k+2m+1, then [L^(2m+1)](n,k) = n!/k!*2^(n-k-2m-1)/(n-k-2m-1)!*(-1)^(m+[(n+1)/2]-[k/2]+n-k); else if n < k+2m+1: [L^(2m)](n,k) = 0.
Unsigned row sums equals A027471(n+1) = n*3^(n-1).
Comments