cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118441 Triangle L, read by rows, equal to the matrix log of A118435, with the property that L^2 consists of a single diagonal (two rows down from the main diagonal).

Original entry on oeis.org

0, 1, 0, -4, 2, 0, -12, 12, 3, 0, 32, -48, -24, 4, 0, 80, -160, -120, 40, 5, 0, -192, 480, 480, -240, -60, 6, 0, -448, 1344, 1680, -1120, -420, 84, 7, 0, 1024, -3584, -5376, 4480, 2240, -672, -112, 8, 0, 2304, -9216, -16128, 16128, 10080, -4032, -1008, 144, 9, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 28 2006

Keywords

Comments

L = log(A118435) = log(H*[C^-1]*H], where C=Pascal's triangle and H=A118433 where H^2 = I (identity matrix).

Examples

			The matrix log, L = log(H*[C^-1]*H], begins:
     0;
     1,     0;
    -4,     2,      0;
   -12,    12,      3,     0;
    32,   -48,    -24,     4,     0;
    80,  -160,   -120,    40,     5,     0;
  -192,   480,    480,  -240,   -60,     6,     0;
  -448,  1344,   1680, -1120,  -420,    84,     7,   0;
  1024, -3584,  -5376,  4480,  2240,  -672,  -112,   8,  0;
  2304, -9216, -16128, 16128, 10080, -4032, -1008, 144,  9,  0;
  ...
The matrix square, L^2, is a single diagonal:
  0;
  0, 0;
  2, 0,  0;
  0, 6,  0,  0;
  0, 0, 12,  0,  0;
  0, 0,  0, 20,  0,  0;
  0, 0,  0,  0, 30,  0,  0;
  ...
From _Peter Luschny_, Apr 23 2020: (Start)
In unsigned form and without the main diagonal, as computed by the Maple script:
  [0], [0]
  [1], [1]
  [2], [4,   2]
  [3], [12,  12,   3]
  [4], [32,  48,   24,   4]
  [5], [80,  160,  120,  40,   5]
  [6], [192, 480,  480,  240,  60,  6]
  [7], [448, 1344, 1680, 1120, 420, 84, 7] (End)
		

Crossrefs

Cf. A118435 (exp(L)), A118442 (column 0), A118443 (row sums), A027471 (unsigned row sums); A118433 (self-inverse triangle), A001815 (column 1?), A001789 (third of column 2?).

Programs

  • Maple
    # Generalized Worpitzky transform of the harmonic numbers.
    CL := p -> PolynomialTools:-CoefficientList(expand(p), x):
    H := n -> add(1/k, k=1..n):
    Trow := proc(n) local k,v; if n=0 then return [0] fi;
    add(add((-1)^(n-v)*binomial(k,v)*H(k)*(-x+v-1)^n, v=0..k), k=0..n); CL(%) end:
    for n from 0 to 7 do Trow(n) od; # Peter Luschny, Apr 23 2020
  • Mathematica
    nmax = 12;
    h[n_, k_] := Binomial[n, k]*(-1)^(Quotient[n+1, 2] - Quotient[k, 2]+n-k);
    H = Table[h[n, k], {n, 0, nmax}, {k, 0, nmax}];
    Cn = Table[Binomial[n, k], {n, 0, nmax}, {k, 0, nmax}];
    L = MatrixLog[H.Inverse[Cn].H ];
    Table[L[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2024 *)
  • PARI
    /* From definition of L as matrix log of H*C^-1*H: */
    {L(n,k)=local(H=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1)*(-1)^(r\2-(c-1)\2+r-c))),C=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1))),N=(H*C^-1*H)); Log=sum(p=1,n+1,-(N^0-N)^p/p);Log[n+1,k+1]}
    for(n=0, 10, for(k=0, n, print1(L(n, k), ", ")); print(""))
    
  • PARI
    /* The matrix power L^m is given by: */
    {L(n,k,m)=if(m%2==0,if(n==k+m,n!/k!*2^(n-k-m)/(n-k-m)!), if(n>=k+m,n!/k!*2^(n-k-m)/(n-k-m)!*(-1)^(m\2+(n+1)\2-k\2+n-k)))}
    for(n=0, 10, for(k=0, n, print1(L(n, k,1), ", ")); print(""))

Formula

For even exponents of L, L^(2m) is a single diagonal:
if n == k+2m, then [L^(2m)](n,k) = n!/k!*2^(n-k-2m)/(n-k-2m)!; else if n != k+2m: [L^(2m)](n,k) = 0.
For odd exponents of L:
if n >= k+2m+1, then [L^(2m+1)](n,k) = n!/k!*2^(n-k-2m-1)/(n-k-2m-1)!*(-1)^(m+[(n+1)/2]-[k/2]+n-k); else if n < k+2m+1: [L^(2m)](n,k) = 0.
Unsigned row sums equals A027471(n+1) = n*3^(n-1).