cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118470 Numbers k for which digitsum(k) + digitsum(k^2) + digitsum(k^3) = digitsum(k^4).

Original entry on oeis.org

0, 162, 171, 351, 468, 558, 1620, 1710, 2106, 3321, 3510, 4023, 4680, 5121, 5247, 5544, 5580, 5868, 8001, 10008, 10071, 10224, 10305, 10503, 10818, 11025, 11241, 11511, 12321, 12654, 12888, 13239, 14004, 14301, 15471, 15876, 16011, 16200, 16218, 17100
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 04 2006

Keywords

Comments

If x is a term, then so is 10*x. - Michael S. Branicky, Dec 25 2021

Examples

			162 is a term because s(162) = 9, s(162^2) = 18, s(162^3) = 27, s(162^4) = 54 and 9 + 18 + 27 = 54.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 20000], Sum[i*(DigitCount[ # ][[i]] + DigitCount[ #^2][[i]] + DigitCount[ #^3][[i]]), {i, 1, 9}] == Sum[i*DigitCount[ #^4][[i]], {i, 1, 9}] &] (* Stefan Steinerberger, May 04 2006 *)
    s[n_] := Plus @@ IntegerDigits@n; Select[ Range[0, 16217], s@# + s[ #^2] + s[ #^3] == s[ #^4] &] (* Robert G. Wilson v, May 04 2006 *)
    Parallelize[While[True,If[Total[IntegerDigits[n]]+Total[IntegerDigits[n^2]]+Total[IntegerDigits[n^3]]==Total[IntegerDigits[n^4]],Print[n]];n++];n] (* J.W.L. (Jan) Eerland, Dec 25 2021 *)
  • PARI
    is(n)=my(s=sumdigits); s(n)+s(n^2)+s(n^3) == s(n^4) \\ Anders Hellström, Sep 16 2015
    
  • PARI
    select(isA118470(n)={sumdigits(n)+sumdigits(n^2)+sumdigits(n^3) == sumdigits(n^4)}, [0..1000]) \\ J.W.L. (Jan) Eerland, Dec 25 2021
    
  • Python
    def sd(n): return sum(map(int, str(n)))
    def ok(n): return sd(n) + sd(n**2) + sd(n**3) == sd(n**4)
    print([k for k in range(20000) if ok(k)]) # Michael S. Branicky, Dec 25 2021

Extensions

More terms from Joshua Zucker, May 11 2006