A118532 Start with 1 and repeatedly reverse the digits and add 15 to get the next term.
1, 16, 76, 82, 43, 49, 109, 916, 634, 451, 169, 976, 694, 511, 130, 46, 79, 112, 226, 637, 751, 172, 286, 697, 811, 133, 346, 658, 871, 193, 406, 619, 931, 154, 466, 679, 991, 214, 427, 739, 952, 274, 487, 799, 1012, 2116, 6127, 7231, 1342, 2446
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..2774
- T. D. Noe, Plot of A118532
- N. J. A. Sloane and others, Sequences of RADD type, OEIS wiki.
Programs
-
Haskell
a118532 n = a118532_list !! (n-1) a118532_list = iterate ((+ 15) . a004086) 1 -- Reinhard Zumkeller, Jan 29 2014
-
PARI
A118532(Nmax,Q=15,S=1)=vector(Nmax,i,if(i>1,S=A004086(S)+Q,S)) \\ - M. F. Hasler, May 06 2012
Formula
This sequence never cycles. After a while, the pattern of length changes settles into an increasing pattern: 10^(4m)+3, 10^(4m+1)+3, 10^(4m+2)+12, 10^(4m+3)+12, 10^(4(m+1))+3, ... The key is that every two steps adds 15 at each end, unless there is a carry across the middle or a trailing 0. This allows many steps to be carried out in a single operation. - Martin Fuller, May 12 2006
a(n+1) = A004086(a(n)) + 15. - Reinhard Zumkeller, Jan 29 2014
Comments