cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A217993 Smallest k such that k^(2^n) + 1 and (k+2)^(2^n) + 1 are both prime.

Original entry on oeis.org

2, 2, 2, 2, 74, 112, 2162, 63738, 13220, 54808, 3656570, 6992032, 125440, 103859114, 56414914, 87888966
Offset: 0

Views

Author

Michel Lagneau, Oct 17 2012

Keywords

Comments

a(15)=87888966 but a(14) is unknown. - Jeppe Stig Nielsen, Mar 17 2018
The prime pair related to a(14) was found four days ago, and today double checking has proved that they are indeed the first occurrence for n=14. - Jeppe Stig Nielsen, May 02 2018

Examples

			a(0) = 2 because 2^1+1 = 3 and 4^1+1 = 5 are prime;
a(1) = 2 because 2^2+1 = 5  and 4^2+1 = 17 are prime;
a(2) = 2 because 2^4+1 = 17  and 4^4+1 = 257 are prime;
a(3) = 2 because  2^8+1 = 257 and 4^8+1 = 65537 are prime.
		

Crossrefs

Programs

  • Maple
    for n from 0  to 5 do:ii:=0:for k from 2 by 2 to 10000 while(ii=0) do:if type(k^(2^n)+1,prime)=true and type((k+2)^(2^n)+1,prime)=true then ii:=1: printf ( "%d %d \n",n,k):else fi:od:od:

Formula

a(n) = A118539(n)-1. - Jeppe Stig Nielsen, Feb 27 2016

Extensions

a(13) from Jeppe Stig Nielsen, Mar 17 2018
a(14) and a(15) from Jeppe Stig Nielsen, May 02 2018
Showing 1-1 of 1 results.