A118679 Absolute value of numerator of determinant of n X n matrix with M(i,j) = i/(i+1) if i=j otherwise 1.
1, 2, 1, 13, 19, 13, 17, 43, 53, 1, 19, 89, 103, 59, 67, 151, 13, 47, 1, 229, 251, 137, 149, 1, 349, 47, 101, 433, 463, 1, 263, 43, 593, 157, 83, 701, 739, 389, 409, 859, 53, 59, 1, 1033, 83, 563, 587, 1223, 67, 331, 1, 1429, 1483, 769, 797, 127, 1709, 1, 457, 1889
Offset: 1
Programs
-
Mathematica
Numerator[Table[(-1)^(n+1) Det[ DiagonalMatrix[ Table[ i/(i+1) - 1, {i, 1, n} ] ] + 1 ], {n, 1, 70} ]] Table[ Numerator[ (n^2+3n-2)/(2(n+1)!) ], {n,1,100} ]
Formula
det(M) = (-1)^(n+1)*(n^2+3*n-2)/(2*(n+1)!), implying that a(n)=p, where p=A006530(n^2+3*n-2) is the largest prime divisor of (n^2+3*n-2), if p>n+1 or p=sqrt((n^2+3*n-2)/2); otherwise a(n)=1.
a(n) = Numerator[(-1)^(n+1) Det[ DiagonalMatrix[ Table[ i/(i+1) - 1, {i, 1, n} ] ] + 1 ]].
a(n) = Numerator[ (n^2+3n-2)/(2(n+1)!) ] = Numerator[ ((2n+3)^2-17)/(4(n+1)!) ].
Extensions
Edited by Max Alekseyev, Jun 02 2009
Comments