A118683 Triangle, T(n,k) = A039701(n) + A039701(k) - A039701(n)*A039701(k), read by rows.
0, 2, 0, 0, 2, 0, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins as: 0; 2, 0; 0, 2, 0; 1, 1, 1, 1; 0, 2, 0, 1, 0; 1, 1, 1, 1, 1, 1; 0, 2, 0, 1, 0, 1, 0; 1, 1, 1, 1, 1, 1, 1, 1; 0, 2, 0, 1, 0, 1, 0, 1, 0; 0, 2, 0, 1, 0, 1, 0, 1, 0, 0;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A039701:= func< n | NthPrime(n) mod 3 >; A118683:= func< n,k | A039701(n)+A039701(k)-A039701(n)*A039701(k) >; [A118683(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2024
-
Mathematica
A039701[n_]:= Mod[Prime[n],3]; T[n_, k_]:= A039701[n] +A039701[k] -A039701[n]*A039701[k]; Table[T[n,k], {n,12}, {k,n}]//Flatten
-
SageMath
def A039701(n): return nth_prime(n)%3 def A118683(n,k): return A039701(n)+A039701(k)-A039701(n)*A039701(n) flatten([[A039701(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Apr 01 2024
Extensions
Offset corrected, definition clarified, sequence extended by Assoc. Eds. of the OEIS, Jun 15 2010