A118704 a(n) = determinant of n X n circulant matrix whose first row is the first n distinct Fibonacci numbers A000045(2), A000045(3), ... A000045(n+1).
1, -3, 18, -429, 24149, -3813376, 1513739413, -1575456727131, 4215561680804992, -29321025953223722025, 529210578655758192641625, -24875949855198086445567836160, 3047957640551011125902187378426905, -974921913036976554924444728974464589255
Offset: 1
Examples
a(2) = -3 because of the determinant -3 = | 1, 2 | | 2, 1 |. a(5) = 24149 = determinant | 1, 2, 3, 5, 8 | | 8, 1, 2, 3, 5 | | 5, 8, 1, 2, 3 | | 3, 5, 8, 1, 2 | | 2, 3, 5, 8, 1 |.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..50
- Eric Weisstein's World of Mathematics, Circulant Matrix.
Crossrefs
Programs
-
Maple
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)-> (<<0|1>, <1|1>>^(2+irem(n-i+j, n)))[1, 2])): seq(a(n), n=1..15); # Alois P. Heinz, Oct 23 2009
Formula
a(n) ~ (-1)^(n+1) * phi^(n*(n+1)) / 5^(n/2), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 10 2025
Extensions
Corrected and extended by Alois P. Heinz, Oct 23 2009
Comments