A118707 a(n) = determinant of n X n circulant matrix whose first row is the first n square numbers 0, 1, ..., (n-1)^2.
0, -1, 65, -6720, 1080750, -252806400, 81433562119, -34630270976000, 18813448225370124, -12719917900800000000, 10478214213011739186685, -10333870908014534470926336, 12023263324381930168836397850, -16297888825404790818315505238016
Offset: 1
Examples
a(2) = -1 because of the determinant -1 = | 0, 1 | | 1, 0 |. a(3) = 65 = determinant |0,1,4| |4,0,1| |1,4,0|.
Links
- Eric Weisstein's World of Mathematics, Circulant Matrix.
Crossrefs
Formula
a(n) = (-1)^(n-1)*(n-1)*(2*n-1)*n^(n-2)*(n^n-(n-2)^n)/12 [From Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 05 2010]
Extensions
More terms from Alois P. Heinz, Mar 16 2017