A118709 a(n) = determinant of n X n circulant matrix whose first row is the first n cube numbers 0, 1, ..., (n-1)^3.
0, -1, 513, -532800, 1077540500, -3831689610000, 22051842087895137, -192710430555501494272, 2433436736207275231050384, -42684202683959414242500000000, 1007311823853329619224620155226025, -31149342348518897782279760206406615040
Offset: 1
Examples
a(2) = -1 because of the determinant -1 = | 0, 1 | | 1, 0 |. a(3) = 513 = determinant |0,1,8| |8,0,1| |1,8,0|. a(6) = 22051842087895137 = determinant |0,1,8,27,64,125,216| |216,0,1,8,27,64,125| |125,216,0,1,8,27,64| |64,125,216,0,1,8,27| |27,64,125,216,0,1,8| |8,27,64,125,216,0,1| |1,8,27,64,125,216,0|.
Links
- Eric Weisstein's World of Mathematics, Circulant Matrix.
Crossrefs
Programs
-
Mathematica
Table[Det[Table[RotateRight[Range[0,i]^3,n],{n,0,i}]],{i,0,10}] (* Harvey P. Dale, Oct 22 2012 *)
Formula
Contribution from Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 05 2010: (Start)
a(n) = (-1)^(n-1)*(n-1)^2*n^(n-2)*(n^(2n)-b(n)^n-c(n)^n+(n^2-3n+3)^n)/24
where
b(n)=(2*n^2-3*n-3+sqrt(15n^2-18n-9)i)/2 and
c(n)=(2*n^2-3*n-3-sqrt(15n^2-18n-9)i)/2 (End)
Extensions
More terms from Harvey P. Dale, Oct 22 2012