A118725 Chen primes for which the reversal is also a Chen prime.
2, 3, 5, 7, 11, 13, 17, 31, 71, 101, 107, 113, 131, 149, 157, 167, 179, 181, 191, 199, 311, 347, 353, 359, 389, 701, 743, 751, 761, 787, 797, 919, 941, 953, 971, 983, 991, 1009, 1031, 1061, 1091, 1097, 1109, 1151, 1217, 1229, 1259, 1283, 1301, 1409, 1439
Offset: 1
Examples
17 and its reversal 71 are both Chen primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A109611.
Programs
-
Maple
revdigs:= proc(n) local L,k; L:= convert(n,base,10); add(L[-k]*10^(k-1),k=1..nops(L)) end proc: filter:= proc(n) local r; if not isprime(n) then return false fi; r:= revdigs(n); isprime(r) and numtheory:-bigomega(n+2) <= 2 and numtheory:-bigomega(r+2) <= 2 end proc: select(filter, [2,seq(i,i=3..2000,2)]); # Robert Israel, Jun 16 2020
-
Mathematica
cpQ[n_]:=Module[{rev=FromDigits[Reverse[IntegerDigits[n]]]}, PrimeOmega[ n+2]<3 && PrimeQ[rev]&&PrimeOmega[rev+2]<3]; Select[Prime[ Range[ 400]], cpQ] (* Harvey P. Dale, Jul 17 2011 *)
Extensions
Corrected by Harvey P. Dale, Jul 17 2011