cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321420 Primes p whose reversal is a Chen prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 31, 71, 73, 101, 107, 113, 131, 149, 157, 167, 179, 181, 191, 199, 311, 347, 353, 359, 389, 701, 733, 739, 743, 751, 761, 787, 797, 919, 941, 953, 967, 971, 983, 991, 1009, 1021, 1031, 1061, 1091, 1097, 1103, 1109, 1151, 1153, 1217, 1223
Offset: 1

Views

Author

Paolo Galliani, Nov 09 2018

Keywords

Comments

73 is the smallest non-Chen prime whose reversal is a Chen prime.

Examples

			73 is in the sequence because its reversal is 37 which is a Chen prime (because 37 + 2 = 39 has at most two prime factors).
		

Crossrefs

Programs

  • Mathematica
    cpQ[n_] := Module[{rev = FromDigits[Reverse[IntegerDigits[n]]]}, PrimeQ[rev] && PrimeOmega[rev + 2] < 3]; Select[Prime[Range[400]], cpQ] (* Amiram Eldar, Nov 09 2018 after Harvey P. Dale at A118725 *)
  • PARI
    is(n) = if(isprime(n), rn = fromdigits(Vecrev(digits(n))); return(isprime(rn) && bigomega(rn+2) <= 2), 0) \\ David A. Corneth, Nov 09 2018

A321422 Primes that are non-Chen primes whose reversal is a Chen prime.

Original entry on oeis.org

73, 733, 739, 967, 1021, 1103, 1153, 1223, 1237, 1453, 1523, 1657, 1723, 1741, 1831, 3023, 3911, 7057, 7187, 7523, 7577, 7643, 7673, 7699, 7717, 7841, 9161, 9173, 9293, 9497, 9679, 9749, 9803, 9833, 9883, 9923, 9931, 10151, 10273, 10453, 10853, 11003, 11083, 11243, 11423
Offset: 1

Views

Author

Paolo Galliani, Nov 09 2018

Keywords

Comments

The second term of the sequence: 733 is congruent to 1 mod 61, to 2 mod 43, to 3 mod 73, where 61 is the second non-Chen prime, 43 is the first non-Chen prime and 73 is the third non-Chen prime. 733 is also congruent to 4 mod (3^6).

Crossrefs

Programs

  • Mathematica
    cpQ[n_] := Module[{rev = FromDigits[Reverse[IntegerDigits[n]]]}, PrimeOmega[n + 2] > 2 && PrimeQ[rev] && PrimeOmega[rev + 2] < 3]; Select[Prime[Range[1300]], cpQ] (* Amiram Eldar, Nov 09 2018 after Harvey P. Dale at A118725 *)
  • PARI
    forprime(p=1,10^4,w=Vecrev(digits(p));q=0;for(j=1,length(w),q=q*10+w[j]);if(ispseudoprime(q)==1,if(bigomega(p+2)>2,if(bigomega(q+2)<=2,print1(p,", ")))))
Showing 1-2 of 2 results.