A307533 Primes p such that p+2 has exactly two distinct prime factors.
13, 19, 31, 37, 43, 53, 61, 67, 73, 83, 89, 97, 109, 113, 127, 131, 139, 151, 157, 173, 181, 199, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 349, 353, 367, 373, 379, 389, 401, 409, 421, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541
Offset: 1
Examples
61 is in the sequence because 61 + 2 = 63 has exactly two distinct prime factors (3 and 7).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) isprime(n) and nops(numtheory:-factorset(n+2))=2 end proc: select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Jul 28 2019
-
Mathematica
Select[Range[500], PrimeQ[#] && PrimeNu[# + 2] == 2 &] (* Amiram Eldar, Apr 14 2019 *)
-
PARI
isok(p) = isprime(p) && (omega(p+2) == 2); \\ Michel Marcus, May 02 2019
Comments