A118770 Determinant of n X n matrix containing the first n^2 semiprimes in increasing order.
4, -14, -196, 480, 696, -57901, -525364, -409579, 18528507, -237549252, -2119519900, 6713972874, 18262155072, -19072020914992, 162234208372185, 1471912942112734, 6828673030820538, -35126752028893500, 729026655790306778, -15365360727898374618
Offset: 1
Examples
a(2) = -14 because of the determinant -14 = |4,6 | |9,10|. a(6) = -57901 = the determinant |4, 6, 9, 10, 14, 15,| |21, 22, 25, 26, 33, 34,| |35, 38, 39, 46, 49, 51,| |55, 57, 58, 62, 65, 69,| |74, 77, 82, 85, 86, 87,| |91, 93, 94, 95, 106, 111|.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..570
Programs
-
Mathematica
SemiPrimePi[ n_ ] := Sum[ PrimePi[ n/Prime @ i ] - i + 1, {i, PrimePi @ Sqrt @ n} ]; SemiPrime[ n_ ] := Block[ {e = Floor[ Log[ 2, n ] + 1 ], a, b}, a = 2^e; Do[ b = 2^p; While[ SemiPrimePi[ a ] < n, a = a + b ]; a = a - b/2, {p, e, 0, -1} ]; a + b/2 ]; Table[ Det[ Partition[ Array[ SemiPrime, n^2 ], n ] ], {n, 20} ] (* Robert G. Wilson v, May 26 2006 *) Module[{nn=5000,spr},spr=Select[Range[nn],PrimeOmega[#]==2&];Table[Det[ Partition[ Take[spr,n^2],n]],{n,Sqrt[Length[spr]]}]] (* Harvey P. Dale, Nov 21 2018 *)
Extensions
More terms from Robert G. Wilson v, May 26 2006
Typos in Mma program corrected by Giovanni Resta, Jun 12 2016
Comments