A118772 Determinant of n X n matrix containing the first n^2 3-almost primes in increasing order.
8, -56, 156, 13328, -920, -83678, 1261988, 54252742, 214409844, -3528354250, 247094703588, -509185323508, 15154985424718, 884710401396570, 49777180907707320, -172913218088289027, 844641410704177098, 3066058962037715903, -33948947842497666568
Offset: 1
Examples
a(2) = -56 because of the determinant -56 = |8, 12| 18, 20|. a(6) = -83678 because of the determinant -83678 = | 8, 12, 18, 20, 27, 28| | 30, 42, 44, 45, 50, 52| | 63, 66, 68, 70, 75, 76| | 78, 92, 98, 99, 102, 105| | 110, 114, 116, 117, 124, 125| | 130, 138, 147, 148, 153, 154|.
Programs
-
Mathematica
ThreeAlmostPrimePi[ n_ ] := Sum[ PrimePi[ n/(Prime @ i*Prime @ j) ] - j + 1, {i, PrimePi[ n^(1/3) ]}, {j, i, PrimePi@ Sqrt[ n/Prime @ i ]} ]; ThreeAlmostPrime[ n_ ] := Block[ {e = Floor[ Log[ 2, n ] + 1 ], a, b}, a = 2^e; Do[ b = 2^p; While[ ThreeAlmostPrimePi[ a ] < n, a = a + b ]; a = a - b/2, {p, e, 0, -1} ]; a + b/2 ]; Table[ Det[ Partition[ Array[ ThreeAlmostPrime, n^2 ], n ] ], {n, 19} ] (* Robert G. Wilson v, May 26 2006 *) With[{tap=Select[Range[4000],PrimeOmega[#]==3&]},Table[Det[ Partition[ Take[tap,n^2],n]],{n,20}]] (* Harvey P. Dale, Apr 17 2020 *)
Extensions
More terms from Robert G. Wilson v, May 26 2006
Typos in Mma program corrected by Giovanni Resta, Jun 12 2016
Comments