A118780 Semiprime(n)*semiprime(n+3) - semiprime(n+1)*semiprime(n+2), where semiprime(n) is the n-th semiprime.
-14, -6, -5, 0, -7, -87, -4, 76, -8, -212, 64, -4, 128, 68, -265, 31, -12, -177, 104, 109, -28, 103, -101, -40, -24, -348, -176, 253, 81, -285, -97, 928, 364, -841, -257, -361, -127, -3, -125, 603, 359, -675, 367, -8, -860, 139, -3, 995, 280, -1276, -167, 629, 145, 443, -365, -579, 171, -569
Offset: 1
Examples
a(1) = -14 because the determinant of the first block of 4 consecutive semiprimes is: |4. 6.| |9. 10|. a(4) = 0 because the determinant of the 4th block of 4 semiprimes is the first of a presumably infinite number of singular matrices: |10. 14.| |15. 21.|. a(8) = 76, the first positive value in the sequence: |22. 25.| |26. 33.|.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A001358 := proc(n) option remember ; local a; if n = 1 then 4 ; else for a from A001358(n-1)+1 do if numtheory[bigomega](a)= 2 then RETURN(a) ; fi ; od: fi ; end: A118780 := proc(n) A001358(n)*A001358(n+3)-A001358(n+1)*A001358(n+2) ; end: seq(A118780(n),n=1..58) ; # R. J. Mathar, Nov 27 2007
-
Mathematica
nmax = 58; spmax = nmax; SP = {}; While[nmax+3 > Length[SP], spmax += nmax; SP = Select[Range[spmax], PrimeOmega[#] == 2&]]; a[n_] := SP[[n]] SP[[n+3]] - SP[[n+1]] SP[[n+2]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Aug 01 2023 *) #[[1]]#[[4]]-#[[2]]#[[3]]&/@Partition[Select[Range[300],PrimeOmega[#]==2&],4,1] (* Harvey P. Dale, Sep 08 2024 *)
Extensions
Better definition from Jens Kruse Andersen, May 03 2008
Comments