A118787 Triangle where T(n,k) = n!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows.
1, 1, 1, 2, 3, 5, 6, 12, 23, 41, 24, 60, 130, 255, 469, 120, 360, 870, 1860, 3679, 6889, 720, 2520, 6720, 15540, 32858, 65247, 123605, 5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169, 40320, 181440, 574560, 1527120, 3638376, 8029980
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 3, 5; 6, 12, 23, 41; 24, 60, 130, 255, 469; 120, 360, 870, 1860, 3679, 6889; 720, 2520, 6720, 15540, 32858, 65247, 123605; 5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169; ... Triangle is formed from powers of F(x) = x/(2*x + log(1-x)): F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +... F(x)^2 = (1 + x)/1! +17/12*x^2 + 2*x^3 + 671/240*x^4 ... F(x)^3 = (2 + 3*x + 5*x^2)/2! + 4*x^3 + 1489/240*x^4 +... F(x)^4 = (6 + 12*x + 23*x^2 + 41/6*x^3)/3! + 8351/720*x^4 +... F(x)^5 = (24 + 60*x + 130*x^2 + 255*x^3 + 469*x^4)/4! +...
Programs
-
PARI
{T(n,k)=local(x=X+X^2*O(X^(k+2)));n!*polcoeff((x/(2*x+log(1-x)))^(n+1),k,X)}
Formula
Main diagonal has e.g.f.: series_reversion[2*x+log(1-x)].
Comments