cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118788 Triangle where T(n,k) = n!/(n-k)!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 1, 6, 23, 41, 1, 10, 65, 255, 469, 1, 15, 145, 930, 3679, 6889, 1, 21, 280, 2590, 16429, 65247, 123605, 1, 28, 490, 6090, 54789, 344694, 1371887, 2620169, 1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901, 1, 45, 1230, 24360
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2006

Keywords

Comments

Row sums are A118789, where Sum_{n>=0} A118789(n)*x^n/n! = exp( Sum_{n>=1} A032188(n)*x^n/n! ).
Main diagonal is A032188(n) = number of labeled series-reduced mobiles (circular rooted trees) with n leaves.
Secondary diagonal is A118790.

Examples

			Row sums e.g.f. equals the exponential of the diagonal e.g.f.:
1 + x + 2*x^2/2! + 9*x^3/3! + 71*x^4/4! +...+ A118789(n)*x^n/n! +...
= exp(x + x^2/2! + 5*x^3/3! + 41*x^4/4! +...+ A032188(n)*x^n/n! +...).
Triangle begins:
  1;
  1, 1;
  1, 3, 5;
  1, 6, 23, 41;
  1, 10, 65, 255, 469;
  1, 15, 145, 930, 3679, 6889;
  1, 21, 280, 2590, 16429, 65247, 123605;
  1, 28, 490, 6090, 54789, 344694, 1371887, 2620169;
  1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901;
  ...
Triangle is formed from powers of F(x) = x/(2*x + log(1-x)):
  F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +...
  F(x)^2 = (1 + x) + 17/12*x^2 + 2*x^3 + 671/240*x^4 +...
  F(x)^3 = (1 + 3/2*x + 5/2*x^2) + 4*x^3 + 1489/240*x^4 +...
  F(x)^4 = (1 + 6/3*x + 23/6*x^2 + 41/6*x^3) + 8351/720*x^4 +...
  F(x)^5 = (1 + 10/4*x + 65/12*x^2 + 255/24*x^3 + 469/24*x^4) +...
		

Crossrefs

Third column is A241765.

Programs

  • PARI
    {T(n,k)=local(x=X+X^2*O(X^(k+2)));n!/(n-k)!*polcoeff((x/(2*x+log(1-x)))^(n+1),k,X)}

Formula

Main diagonal has e.g.f.: series_reversion[2*x+log(1-x)].
Conjecture: T(n,k) = Sum_{j=0..k} binomial(n+j, n-k)*A269940(k, j) for 0 <= k <= n. - Mikhail Kurkov, Feb 17 2025