A118788 Triangle where T(n,k) = n!/(n-k)!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows.
1, 1, 1, 1, 3, 5, 1, 6, 23, 41, 1, 10, 65, 255, 469, 1, 15, 145, 930, 3679, 6889, 1, 21, 280, 2590, 16429, 65247, 123605, 1, 28, 490, 6090, 54789, 344694, 1371887, 2620169, 1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901, 1, 45, 1230, 24360
Offset: 0
Examples
Row sums e.g.f. equals the exponential of the diagonal e.g.f.: 1 + x + 2*x^2/2! + 9*x^3/3! + 71*x^4/4! +...+ A118789(n)*x^n/n! +... = exp(x + x^2/2! + 5*x^3/3! + 41*x^4/4! +...+ A032188(n)*x^n/n! +...). Triangle begins: 1; 1, 1; 1, 3, 5; 1, 6, 23, 41; 1, 10, 65, 255, 469; 1, 15, 145, 930, 3679, 6889; 1, 21, 280, 2590, 16429, 65247, 123605; 1, 28, 490, 6090, 54789, 344694, 1371887, 2620169; 1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901; ... Triangle is formed from powers of F(x) = x/(2*x + log(1-x)): F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +... F(x)^2 = (1 + x) + 17/12*x^2 + 2*x^3 + 671/240*x^4 +... F(x)^3 = (1 + 3/2*x + 5/2*x^2) + 4*x^3 + 1489/240*x^4 +... F(x)^4 = (1 + 6/3*x + 23/6*x^2 + 41/6*x^3) + 8351/720*x^4 +... F(x)^5 = (1 + 10/4*x + 65/12*x^2 + 255/24*x^3 + 469/24*x^4) +...
Programs
-
PARI
{T(n,k)=local(x=X+X^2*O(X^(k+2)));n!/(n-k)!*polcoeff((x/(2*x+log(1-x)))^(n+1),k,X)}
Formula
Main diagonal has e.g.f.: series_reversion[2*x+log(1-x)].
Conjecture: T(n,k) = Sum_{j=0..k} binomial(n+j, n-k)*A269940(k, j) for 0 <= k <= n. - Mikhail Kurkov, Feb 17 2025
Comments