cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118811 Decimal expansion of arc length of the (first) butterfly curve.

Original entry on oeis.org

9, 0, 1, 7, 3, 5, 6, 9, 8, 5, 6, 5, 4, 6, 9, 7, 6, 9, 1, 8, 6, 0, 9, 6, 3, 4, 0, 2, 9, 7, 0, 0, 7, 7, 0, 0, 3, 9, 3, 0, 5, 9, 7, 1, 8, 6, 1, 3, 0, 9, 8, 0, 1, 9, 8, 9, 3, 4, 3, 3, 8, 3, 3, 7, 6, 1, 7, 1, 5, 4, 4, 6, 8, 0, 2, 0, 3, 4, 6, 9, 4, 5, 5, 7, 2, 9, 6, 9, 7, 0, 5, 9, 3, 1, 0, 3, 5, 8, 6
Offset: 1

Views

Author

Eric W. Weisstein, Apr 30 2006

Keywords

Examples

			9.0173569856546976918...
		

Crossrefs

Cf. A118292.

Programs

  • Mathematica
    eq = y^6 == x^2-x^6; f[x_] = y /. Solve[eq, y][[2]]; g[y_] = x /. Solve[eq, x][[2]]; h[y_] = x /. Solve[eq, x][[4]]; x1 = 3/8; y1 = f[x1]; x2 = 7/8; y2 = f[x2]; ni[a_, b_] := NIntegrate[a, b, WorkingPrecision -> 120]; i1 = ni[Sqrt[1+f'[x]^2], {x, x1, x2}]; i2 = ni[Sqrt[1+g'[y]^2], {y, 0, y2}]; i3 = ni[Sqrt[1+h'[y]^2], {y, 0, y1}]; Take[RealDigits[4(i1+i2+i3)][[1]], 99](* Jean-François Alcover, Jan 19 2012 *)
  • PARI
    4*intnum(x=0,1,sqrt(1+(x/3-x^5)^2/(x^2-x^6)^(5/3))) \\ Charles R Greathouse IV, Jan 17 2012

Extensions

Last digit corrected by Eric W. Weisstein, Jan 18 2012