A118821 2-adic continued fraction of zero, where a(n) = 2 if n is odd, -A006519(n/2) otherwise.
2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -16, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -32, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -16
Offset: 1
Examples
For n >= 1, convergents A118822(k)/A118823(k) are: at k = 4*n: -1/A080277(n); at k = 4*n+1: -2/(2*A080277(n)-1); at k = 4*n+2: -1/(A080277(n)-1); at k = 4*n-1: 0/(-1)^n. Convergents begin: 2/1, -1/-1, 0/-1, -1/1, -2/1, 1/0, 0/1, 1/-4, 2/-7, -1/3, 0/-1, -1/5, -2/9, 1/-4, 0/1, 1/-12, 2/-23, -1/11, 0/-1, -1/13, -2/25, 1/-12, 0/1, 1/-16, 2/-31, -1/15, 0/-1, -1/17, -2/33, 1/-16, 0/1, 1/-32, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
Array[-2^(IntegerExponent[#, 2] - 1) /. -1/2 -> 2 &, 96] (* Michael De Vlieger, Nov 02 2018 *)
-
PARI
a(n)=local(p=+2,q=-1);if(n%2==1,p,q*2^valuation(n/2,2))
Comments