A118826 Denominators of the convergents of the 2-adic continued fraction of zero given by A118824.
1, 1, -1, -1, 1, 0, 1, 4, -7, -3, -1, -5, 9, 4, 1, 12, -23, -11, -1, -13, 25, 12, 1, 16, -31, -15, -1, -17, 33, 16, 1, 32, -63, -31, -1, -33, 65, 32, 1, 36, -71, -35, -1, -37, 73, 36, 1, 44, -87, -43, -1, -45, 89, 44, 1, 48, -95, -47, -1, -49, 97, 48, 1, 80, -159, -79, -1, -81, 161, 80, 1, 84, -167, -83, -1, -85, 169, 84, 1, 92
Offset: 1
Examples
For n>=1, convergents A118825(k)/A118826(k) are: at k = 4*n: 1/A080277(n); at k = 4*n+1: 2/(2*A080277(n)-1); at k = 4*n+2: 1/(A080277(n)-1); at k = 4*n-1: 0. Convergents begin: -2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4, -2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12, -2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16, -2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ...
Programs
-
PARI
{a(n)=local(p=-2,q=+1,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[2,1]}