cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118824 2-adic continued fraction of zero, where a(n) = -2 if n is odd, A006519(n/2) otherwise.

Original entry on oeis.org

-2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 32, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Comments

Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118827, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.

Examples

			For n >= 1, convergents A118825(k)/A118826(k):
  at k = 4*n: 1/A080277(n);
  at k = 4*n+1: 2/(2*A080277(n)-1);
  at k = 4*n+2: 1/(A080277(n)-1);
  at k = 4*n-1: 0.
Convergents begin:
  -2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4,
  -2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12,
  -2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16,
  -2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ...
		

Crossrefs

Cf. A006519, A080277; convergents: A118825/A118826; variants: A118821, A118827, A118830; A100338.

Programs

  • Mathematica
    Array[If[OddQ@ #, -2, 2^(IntegerExponent[#, 2] - 1)] &, 102] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    a(n)=local(p=-2,q=+1);if(n%2==1,p,q*2^valuation(n/2,2))

A118825 Numerators of the convergents of the 2-adic continued fraction of zero given by A118824.

Original entry on oeis.org

-2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1, 0, 1, -2, -1, 0, -1, 2, 1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Examples

			For n>=1, convergents A118825(k)/A118826(k) are:
  at k = 4*n: 1/A080277(n);
  at k = 4*n+1: 2/(2*A080277(n)-1);
  at k = 4*n+2: 1/(A080277(n)-1);
  at k = 4*n-1: 0/(-1)^n.
Convergents begin:
  -2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4,
  -2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12,
  -2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16,
  -2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ...
		

Crossrefs

Cf. A118824 (partial quotients), A118826 (denominators), A118822, A230075 (start with a(5)).

Programs

  • Maple
    A118825:=n->sqrt((n+1)^2 mod 8))*(-1)^floor((n+3)/4); seq(A118825(n), n=1..100); # Wesley Ivan Hurt, Jan 04 2014
  • Mathematica
    Table[Sqrt[Mod[(n+1)^2, 8]](-1)^Floor[(n+3)/4], {n, 100}] (* Wesley Ivan Hurt, Jan 04 2014 *)
    PadRight[{},120,{-2,-1,0,-1,2,1,0,1}] (* Harvey P. Dale, May 26 2020 *)
  • PARI
    {a(n)=local(p=-2,q=+1,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[1,1]}

Formula

Period 8 sequence: [ -2,-1,0,-1,2,1,0,1].
G.f.: -x*(1+x)*(x^2-x+2) / ( 1+x^4 ).
a(n) = sqrt((n+1)^2 mod 8)*(-1)^floor((n+3)/4). - Wesley Ivan Hurt, Jan 04 2014
Showing 1-2 of 2 results.