A118824 2-adic continued fraction of zero, where a(n) = -2 if n is odd, A006519(n/2) otherwise.
-2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 32, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1
Offset: 1
Examples
For n >= 1, convergents A118825(k)/A118826(k): at k = 4*n: 1/A080277(n); at k = 4*n+1: 2/(2*A080277(n)-1); at k = 4*n+2: 1/(A080277(n)-1); at k = 4*n-1: 0. Convergents begin: -2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4, -2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12, -2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16, -2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
Array[If[OddQ@ #, -2, 2^(IntegerExponent[#, 2] - 1)] &, 102] (* Michael De Vlieger, Nov 06 2018 *)
-
PARI
a(n)=local(p=-2,q=+1);if(n%2==1,p,q*2^valuation(n/2,2))
Comments