A118870 Number of binary sequences of length n with no subsequence 0101.
1, 2, 4, 8, 15, 28, 53, 100, 188, 354, 667, 1256, 2365, 4454, 8388, 15796, 29747, 56020, 105497, 198672, 374140, 704582, 1326871, 2498768, 4705689, 8861770, 16688516, 31427872, 59185079, 111457548, 209897245, 395279228, 744391228, 1401840170
Offset: 0
Keywords
Examples
a(5) = 28 because among the 32 (=2^5) binary sequences of length 5 only 01010, 01011, 00101 and 10101 contain the subsequence 0101.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-1).
Programs
-
Magma
[n le 4 select 2^(n-1) else 2*Self(n-1) -Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Jan 14 2022
-
Maple
a[0]:=1:a[1]:=2:a[2]:=4:a[3]:=8: for n from 4 to 35 do a[n]:=2*a[n-1]-a[n-2]+2*a[n-3]-a[n-4] od: seq(a[n], n=0..35);
-
Mathematica
CoefficientList[Series[(1+x^2)/(1-2x+x^2-2x^3+x^4),{x,0,40}],x] (* Geoffrey Critzer, Nov 28 2013 *)
-
Sage
@CachedFunction def A112575(n): return sum((-1)^k*binomial(n-k, k)*lucas_number1(n-2*k, 2, -1) for k in (0..(n/2))) def A118870(n): return A112575(n-1) + A112575(n+1) [A118870(n) for n in (0..40)] # G. C. Greubel, Jan 14 2022
Formula
G.f.: (1 +x^2)/(1 -2*x +x^2 -2*x^3 +x^4).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) for n>=4.
Comments