cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118870 Number of binary sequences of length n with no subsequence 0101.

Original entry on oeis.org

1, 2, 4, 8, 15, 28, 53, 100, 188, 354, 667, 1256, 2365, 4454, 8388, 15796, 29747, 56020, 105497, 198672, 374140, 704582, 1326871, 2498768, 4705689, 8861770, 16688516, 31427872, 59185079, 111457548, 209897245, 395279228, 744391228, 1401840170
Offset: 0

Views

Author

Emeric Deutsch, May 03 2006

Keywords

Comments

Column 0 of A118869 and column 10 of A209972.

Examples

			a(5) = 28 because among the 32 (=2^5) binary sequences of length 5 only 01010, 01011, 00101 and 10101 contain the subsequence 0101.
		

Crossrefs

Programs

  • Magma
    [n le 4 select 2^(n-1) else 2*Self(n-1) -Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Jan 14 2022
    
  • Maple
    a[0]:=1:a[1]:=2:a[2]:=4:a[3]:=8: for n from 4 to 35 do a[n]:=2*a[n-1]-a[n-2]+2*a[n-3]-a[n-4] od: seq(a[n], n=0..35);
  • Mathematica
    CoefficientList[Series[(1+x^2)/(1-2x+x^2-2x^3+x^4),{x,0,40}],x] (* Geoffrey Critzer, Nov 28 2013 *)
  • Sage
    @CachedFunction
    def A112575(n): return sum((-1)^k*binomial(n-k, k)*lucas_number1(n-2*k, 2, -1) for k in (0..(n/2)))
    def A118870(n): return A112575(n-1) + A112575(n+1)
    [A118870(n) for n in (0..40)] # G. C. Greubel, Jan 14 2022

Formula

G.f.: (1 +x^2)/(1 -2*x +x^2 -2*x^3 +x^4).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) for n>=4.
a(n) = A112575(n-1) + A112575(n+1). - R. J. Mathar, Dec 10 2011