cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118882 Numbers which are the sum of two squares in two or more different ways.

Original entry on oeis.org

25, 50, 65, 85, 100, 125, 130, 145, 169, 170, 185, 200, 205, 221, 225, 250, 260, 265, 289, 290, 305, 325, 338, 340, 365, 370, 377, 400, 410, 425, 442, 445, 450, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 578, 580, 585, 610, 625, 629, 650, 676, 680
Offset: 1

Views

Author

Keywords

Comments

Numbers whose prime factorization includes at least two primes (not necessarily distinct) congruent to 1 mod 4 and any prime factor congruent to 3 mod 4 has even multiplicity. Products of two values in A004431.
Squares of distances that are the distance between two points in the square lattice in two or more nontrivially different ways. A quadrilateral with sides a,b,c,d has perpendicular diagonals iff a^2+c^2 = b^2+d^2. This sequence is the sums of the squares of opposite sides of such quadrilaterals, excluding kites (a=b,c=d), but including right triangles (the degenerate case d=0).

Examples

			50 = 7^2 + 1^2 = 5^2 + 5^2, so 50 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a118882 n = a118882_list !! (n-1)
    a118882_list = findIndices (> 1) a000161_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Mathematica
    Select[Range[1000], Length[PowersRepresentations[#, 2, 2]] > 1&] (* Jean-François Alcover, Mar 02 2019 *)
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A118882_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            if 1>1):
                yield n
    A118882_list = list(islice(A118882_gen(),30)) # Chai Wah Wu, Sep 09 2022

Formula

A000161(a(n)) > 1. [Reinhard Zumkeller, Aug 16 2011]