A118884 Triangle read by rows: T(n,k) is the number of binary sequences of length n containing k subsequences 0011 (n,k>=0).
1, 2, 4, 8, 15, 1, 28, 4, 52, 12, 96, 32, 177, 78, 1, 326, 180, 6, 600, 400, 24, 1104, 864, 80, 2031, 1827, 237, 1, 3736, 3800, 648, 8, 6872, 7800, 1672, 40, 12640, 15840, 4128, 160, 23249, 31884, 9846, 556, 1, 42762, 63704, 22844, 1752, 10, 78652, 126480
Offset: 0
Examples
T(9,2) = 6 because we have aa0, aa1, a0a, a1a, 0aa and 1aa, where a=0011. Triangle starts: 1; 2; 4; 8; 15, 1; 28, 4; 52, 12; 96, 32;
Links
- Alois P. Heinz, Rows n = 0..300, flattened
Programs
-
Maple
G:=1/(1-2*z+(1-t)*z^4): Gser:=simplify(series(G,z=0,23)): P[0]:=1: for n from 1 to 19 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 19 do seq(coeff(P[n],t,j),j=0..floor(n/4)) od; # yields sequence in triangular form
-
Mathematica
nn=12;c=0;Map[Select[#,#>0&]&,CoefficientList[Series[1/(1-2x - (y-1)x^4/ (1-(y-1)c)), {x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Dec 25 2013 *)
Formula
G.f.: G(t,z) = 1/[1-2z+(1-t)z^4]. T(n,k) = 2T(n-1,k)-T(n-4,k)+T(n-4,k-1) (n>=4,k>=1).
Comments