cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A233940 Number T(n,k) of binary words of length n with exactly k (possibly overlapping) occurrences of the subword given by the binary expansion of n; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 2, 1, 12, 4, 21, 10, 1, 33, 30, 1, 81, 26, 13, 5, 2, 1, 177, 78, 1, 338, 156, 18, 667, 278, 68, 10, 1, 1178, 722, 142, 6, 2031, 1827, 237, 1, 4105, 3140, 862, 84, 1, 6872, 7800, 1672, 40, 20569, 5810, 3188, 1662, 829, 394, 181, 80, 35, 12, 5, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 18 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the positive terms.

Examples

			T(3,0) = 5: 000, 001, 010, 100, 101 (subword 11 is avoided).
T(3,1) = 2: 011, 110 (exactly one occurrence of 11).
T(3,2) = 1: 111 (two overlapping occurrences of 11).
Triangle T(n,k) begins:
: n\k :   0    1   2   3  4  5 ...
+-----+------------------------
:  0  :   1;                       [row  0 of A007318]
:  1  :   1,   1;                  [row  1 of A007318]
:  2  :   3,   1;                  [row  2 of A034867]
:  3  :   5,   2,  1;              [row  3 of A076791]
:  4  :  12,   4;                  [row  4 of A118424]
:  5  :  21,  10,  1;              [row  5 of A118429]
:  6  :  33,  30,  1;              [row  6 of A118424]
:  7  :  81,  26, 13,  5, 2, 1;    [row  7 of A118390]
:  8  : 177,  78,  1;              [row  8 of A118884]
:  9  : 338, 156, 18;              [row  9 of A118890]
: 10  : 667, 278, 68, 10, 1;       [row 10 of A118869]
		

Crossrefs

Columns k=0-10 give: A234005 (or main diagonal of A209972), A229905, A236231, A236232, A236233, A236234, A236235, A236236, A236237, A236238, A236239.
T(2^n-1,2^n-2n+1) = A045623(n-1) for n>0.
Last elements of rows give A229293.
Row sums give A000079.

Programs

  • Maple
    F:= proc(n)
    local w, L, s,b,s0,R,j,T,p,y,m,ymax;
    w:= ListTools:-Reverse(convert(n,base,2));
    L:= nops(w);
    for s from 0 to L-1 do
      for b from 0 to 1 do
       s0:= [op(w[1..s]),b];
       if s0 = w then R[s,b]:= 1
       else R[s,b]:= 0
       fi;
       for j from min(nops(s0),L-1) by -1 to 0 do
          if s0[-j..-1] = w[1..j] then
            T[s,b]:= j;
            break
          fi
       od;
    od;
    od;
    for s from L-1 by -1 to 0 do
      p[0,s,n]:= 1:
      for y from 1 to n do
         p[y,s,n]:= 0 od od;
    for m from n-1 by -1 to 0 do
       for s from L-1 by -1 to 0 do
          for y from 0 to n do
            p[y,s,m]:= `if`(y>=R[s,0],1/2*p[y-R[s,0],T[s,0],m+1],0)
                      +
    `if`(y>=R[s,1],1/2*p[y-R[s,1],T[s,1],m+1],0)
    od od od:
    ymax:= ListTools:-Search(0,[seq(p[y,0,0],y=0..n)])-2;
    seq(2^n*p[y,0,0],y=0..ymax);
    end proc:
    F(0):= 1:
    F(1):= (1,1):
    for n from 0 to 30 do F(n) od; # Robert Israel, May 22 2015
  • Mathematica
    (* This program is not convenient for a large number of rows *) count[word_List, subword_List] := Module[{cnt = 0, s1 = Sequence @@ subword, s2 = Sequence @@ Rest[subword]}, word //. {a___, s1, b___} :> (cnt++; {a, 2, s2, b}); cnt]; t[n_, k_] := Module[{subword, words}, subword = IntegerDigits[n, 2]; words = PadLeft[IntegerDigits[#, 2], n] & /@ Range[0, 2^n - 1]; Select[words, count[#, subword] == k &] // Length]; row[n_] := Reap[For[k = 0, True, k++, tnk = t[n, k]; If[tnk == 0, Break[], Sow[tnk]]]][[2, 1]]; Table[Print["n = ", n, " ", r = row[n]]; r, {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 13 2014 *)

Formula

Sum_{k>0} k*T(n,k) = A228612(n).

A118885 Number of binary sequences of length n containing exactly one subsequence 0011.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 12, 32, 78, 180, 400, 864, 1827, 3800, 7800, 15840, 31884, 63704, 126480, 249760, 490885, 960828, 1873828, 3642560, 7060314, 13649196, 26324704, 50662464, 97309767, 186571248, 357119472, 682524224, 1302589016, 2482706544
Offset: 0

Views

Author

Emeric Deutsch, May 03 2006

Keywords

Comments

Column 1 of A118884.

Examples

			a(5)=4 because we have 00110,00111,00011 and 10011.
		

Crossrefs

Cf. A118884.

Programs

  • Maple
    g:=z^4/(1-2*z+z^4)^2: gser:=series(g,z=0,40): seq(coeff(gser,z,n),n=0..36);

Formula

G.f. x^4 / ( (x-1)^2*(x^3+x^2+x-1)^2 ).
a(n) -2*a(n-1) + a(n-2) = A073778(n). - R. J. Mathar, Jul 26 2022
Showing 1-2 of 2 results.