A209972
Number of binary words of length n avoiding the subword given by the binary expansion of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 4, 1, 1, 1, 2, 4, 5, 5, 1, 1, 1, 2, 4, 7, 8, 6, 1, 1, 1, 2, 4, 7, 12, 13, 7, 1, 1, 1, 2, 4, 7, 12, 20, 21, 8, 1, 1, 1, 2, 4, 7, 12, 21, 33, 34, 9, 1, 1, 1, 2, 4, 8, 13, 20, 37, 54, 55, 10, 1, 1, 1, 2, 4, 8, 15, 24, 33, 65, 88, 89, 11, 1, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 2, 2, 2, 2, 2, ...
1, 1, 3, 3, 4, 4, 4, 4, 4, ...
1, 1, 4, 5, 7, 7, 7, 7, 8, ...
1, 1, 5, 8, 12, 12, 12, 13, 15, ...
1, 1, 6, 13, 20, 21, 20, 24, 28, ...
1, 1, 7, 21, 33, 37, 33, 44, 52, ...
1, 1, 8, 34, 54, 65, 54, 81, 96, ...
1, 1, 9, 55, 88, 114, 88, 149, 177, ...
Columns give: 0, 1:
A000012, 2:
A001477(n+1), 3:
A000045(n+2), 4, 6:
A000071(n+3), 5:
A005251(n+3), 7:
A000073(n+3), 8, 12, 14:
A008937(n+1), 9, 11, 13:
A049864(n+2), 10:
A118870, 15:
A000078(n+4), 16, 20, 24, 26, 28, 30:
A107066, 17, 19, 23, 25, 29:
A210003, 18, 22:
A209888, 21:
A152718(n+3), 27:
A210021, 31:
A001591(n+5), 32:
A001949(n+5), 33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61:
A210031.
-
A[n_, k_] := Module[{bb, cnt = 0}, Do[bb = PadLeft[IntegerDigits[j, 2], n]; If[SequencePosition[bb, IntegerDigits[k, 2], 1]=={}, cnt++], {j, 0, 2^n-1 }]; cnt];
Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 01 2021 *)
A234005
Number of binary words of length n avoiding the subword given by the binary expansion of n.
Original entry on oeis.org
1, 1, 3, 5, 12, 21, 33, 81, 177, 338, 667, 1178, 2031, 4105, 6872, 20569, 42744, 84457, 167863, 315633, 590081, 1325032, 2366125, 4408350, 8146016, 16474904, 30266484, 67320433, 112454976, 230099960, 417825921, 1333610936, 2714234540, 5411487988, 10800172911
Offset: 0
a(0) = 1: the empty word.
a(1) = 1: 0.
a(2) = 3: 00, 01, 11.
a(3) = 5: 000, 001, 010, 100, 101.
a(4) = 12: 0000, 0001, 0010, 0011, 0101, 0110, 0111, 1010, 1011, 1101, 1110, 1111.
A228612
Number of (possibly overlapping) occurrences of the subword given by the binary expansion of n in all binary words of length n.
Original entry on oeis.org
0, 1, 1, 4, 4, 12, 32, 80, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 1811939328, 3758096384, 7784628224
Offset: 0
a(3) = 4 because we have one subword 11 in each of 011, 110 and two overlapping occurrences of 11 in 111.
a(4) = 4 because we have one subword 100 in each of 0100, 1000, 1001, 1100 and no other occurrences in binary words of length 4.
a(5) = 12 because we have one subword 101 in each of 00101, 01010, 01011, 01101, 10100, 10110, 10111, 11010, 11011, 11101 and two overlapping occurrences of 101 in 10101.
A229293
Number of binary words of length n with exactly k (possibly overlapping) occurrences of the subword given by the binary expansion of n for maximal k with at least one word.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 1, 1, 18, 1, 6, 1, 1, 40, 1, 8, 1, 4, 33, 1, 1, 17, 42, 1120, 1, 12, 11, 448, 1, 1, 1, 84, 52, 1, 985, 1, 10, 1, 316, 3360, 1, 1, 75, 144, 1, 1, 12, 1, 504, 180, 15, 7920, 102, 1, 16, 220, 14, 11440, 17, 1, 1, 264, 1, 20, 3206, 399, 1, 4
Offset: 0
a(4) = 4 because there are 4 binary words of length 4 with one occurrence of 100, namely 0100, 1000, 1001, 1100, and no words with more than one occurrence of 100.
Last (positive) terms of rows of
A233940.
A229905
Number of binary words of length n with exactly one occurrence of the subword given by the binary expansion of n.
Original entry on oeis.org
0, 1, 1, 2, 4, 10, 30, 26, 78, 156, 278, 722, 1827, 3140, 7800, 5810, 21016, 40260, 76104, 173836, 394492, 520775, 1376090, 3080882, 6887040, 12734023, 28266044, 44217698, 114969792, 211934801, 464129402, 354151217, 1360414116, 2644465928, 5134476403
Offset: 0
a(1) = 1: 1.
a(2) = 1: 10.
a(3) = 2: 011, 110.
a(4) = 4: 0100, 1000, 1001, 1100.
a(5) = 10: 00101, 01010, 01011, 01101, 10100, 10110, 10111, 11010, 11011, 11101.
A236231
Number of binary words of length n with exactly 2 (possibly overlapping) occurrences of the subword given by the binary expansion of n.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 1, 13, 1, 18, 68, 142, 237, 862, 1672, 3188, 1768, 6078, 16090, 32566, 62214, 181695, 380903, 802572, 1634880, 3784693, 7871112, 17020646, 36800640, 78582498, 168074511, 206295476, 209557176, 490017420, 1097340244, 2222684855, 5116364054
Offset: 0
A236232
Number of binary words of length n with exactly 3 (possibly overlapping) occurrences of the subword given by the binary expansion of n.
Original entry on oeis.org
5, 0, 0, 10, 6, 1, 84, 40, 1662, 8, 276, 1948, 2220, 1788, 52903, 63836, 92548, 108160, 527238, 691832, 4591942, 4085120, 14751215, 22719212, 116689525, 10635080, 42281072, 136612465, 216703500, 987830670, 1083905462, 3170868937, 5311691060, 8407495040
Offset: 7
A236233
Number of binary words of length n with exactly 4 (possibly overlapping) occurrences of the subword given by the binary expansion of n.
Original entry on oeis.org
2, 0, 0, 1, 0, 0, 1, 0, 829, 0, 1, 135, 33, 1, 13240, 6875, 4214, 1120, 32898, 13380, 916700, 124480, 1436212, 984719, 64373760, 126300, 1658572, 10718156, 10201655, 151128452, 59698016, 302737587, 335666252, 302196960, 1826553416, 42810588352, 9670953778
Offset: 7
A236234
Number of binary words of length n with exactly 5 (possibly overlapping) occurrences of the subword given by the binary expansion of n.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 394, 0, 0, 4, 0, 0, 2874, 458, 42, 0, 675, 12, 135358, 448, 65247, 8058, 34741899, 84, 23560, 532949, 199274, 19005607, 1503366, 19302273, 10429164, 3054912, 67835066, 12419002159, 419211720, 185903568, 36708519210, 17236630474
Offset: 7
A236235
Number of binary words of length n with exactly 6 (possibly overlapping) occurrences of the subword given by the binary expansion of n.
Original entry on oeis.org
181, 0, 0, 0, 0, 0, 535, 17, 0, 0, 1, 0, 14082, 0, 978, 1, 18383716, 0, 52, 15824, 985, 1995824, 12572, 806911, 127964, 3360, 1121590, 3388924416, 8831268, 767760, 5674830623, 1127556150, 436806956, 75269404, 2826220760, 623517360, 178352390026, 4750656064
Offset: 15
Showing 1-10 of 14 results.
Comments