cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A233940 Number T(n,k) of binary words of length n with exactly k (possibly overlapping) occurrences of the subword given by the binary expansion of n; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 2, 1, 12, 4, 21, 10, 1, 33, 30, 1, 81, 26, 13, 5, 2, 1, 177, 78, 1, 338, 156, 18, 667, 278, 68, 10, 1, 1178, 722, 142, 6, 2031, 1827, 237, 1, 4105, 3140, 862, 84, 1, 6872, 7800, 1672, 40, 20569, 5810, 3188, 1662, 829, 394, 181, 80, 35, 12, 5, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 18 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the positive terms.

Examples

			T(3,0) = 5: 000, 001, 010, 100, 101 (subword 11 is avoided).
T(3,1) = 2: 011, 110 (exactly one occurrence of 11).
T(3,2) = 1: 111 (two overlapping occurrences of 11).
Triangle T(n,k) begins:
: n\k :   0    1   2   3  4  5 ...
+-----+------------------------
:  0  :   1;                       [row  0 of A007318]
:  1  :   1,   1;                  [row  1 of A007318]
:  2  :   3,   1;                  [row  2 of A034867]
:  3  :   5,   2,  1;              [row  3 of A076791]
:  4  :  12,   4;                  [row  4 of A118424]
:  5  :  21,  10,  1;              [row  5 of A118429]
:  6  :  33,  30,  1;              [row  6 of A118424]
:  7  :  81,  26, 13,  5, 2, 1;    [row  7 of A118390]
:  8  : 177,  78,  1;              [row  8 of A118884]
:  9  : 338, 156, 18;              [row  9 of A118890]
: 10  : 667, 278, 68, 10, 1;       [row 10 of A118869]
		

Crossrefs

Columns k=0-10 give: A234005 (or main diagonal of A209972), A229905, A236231, A236232, A236233, A236234, A236235, A236236, A236237, A236238, A236239.
T(2^n-1,2^n-2n+1) = A045623(n-1) for n>0.
Last elements of rows give A229293.
Row sums give A000079.

Programs

  • Maple
    F:= proc(n)
    local w, L, s,b,s0,R,j,T,p,y,m,ymax;
    w:= ListTools:-Reverse(convert(n,base,2));
    L:= nops(w);
    for s from 0 to L-1 do
      for b from 0 to 1 do
       s0:= [op(w[1..s]),b];
       if s0 = w then R[s,b]:= 1
       else R[s,b]:= 0
       fi;
       for j from min(nops(s0),L-1) by -1 to 0 do
          if s0[-j..-1] = w[1..j] then
            T[s,b]:= j;
            break
          fi
       od;
    od;
    od;
    for s from L-1 by -1 to 0 do
      p[0,s,n]:= 1:
      for y from 1 to n do
         p[y,s,n]:= 0 od od;
    for m from n-1 by -1 to 0 do
       for s from L-1 by -1 to 0 do
          for y from 0 to n do
            p[y,s,m]:= `if`(y>=R[s,0],1/2*p[y-R[s,0],T[s,0],m+1],0)
                      +
    `if`(y>=R[s,1],1/2*p[y-R[s,1],T[s,1],m+1],0)
    od od od:
    ymax:= ListTools:-Search(0,[seq(p[y,0,0],y=0..n)])-2;
    seq(2^n*p[y,0,0],y=0..ymax);
    end proc:
    F(0):= 1:
    F(1):= (1,1):
    for n from 0 to 30 do F(n) od; # Robert Israel, May 22 2015
  • Mathematica
    (* This program is not convenient for a large number of rows *) count[word_List, subword_List] := Module[{cnt = 0, s1 = Sequence @@ subword, s2 = Sequence @@ Rest[subword]}, word //. {a___, s1, b___} :> (cnt++; {a, 2, s2, b}); cnt]; t[n_, k_] := Module[{subword, words}, subword = IntegerDigits[n, 2]; words = PadLeft[IntegerDigits[#, 2], n] & /@ Range[0, 2^n - 1]; Select[words, count[#, subword] == k &] // Length]; row[n_] := Reap[For[k = 0, True, k++, tnk = t[n, k]; If[tnk == 0, Break[], Sow[tnk]]]][[2, 1]]; Table[Print["n = ", n, " ", r = row[n]]; r, {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 13 2014 *)

Formula

Sum_{k>0} k*T(n,k) = A228612(n).

A209972 Number of binary words of length n avoiding the subword given by the binary expansion of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 4, 1, 1, 1, 2, 4, 5, 5, 1, 1, 1, 2, 4, 7, 8, 6, 1, 1, 1, 2, 4, 7, 12, 13, 7, 1, 1, 1, 2, 4, 7, 12, 20, 21, 8, 1, 1, 1, 2, 4, 7, 12, 21, 33, 34, 9, 1, 1, 1, 2, 4, 8, 13, 20, 37, 54, 55, 10, 1, 1, 1, 2, 4, 8, 15, 24, 33, 65, 88, 89, 11, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2012

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  1,  1,  2,   2,   2,   2,   2,   2,   2, ...
  1,  1,  3,   3,   4,   4,   4,   4,   4, ...
  1,  1,  4,   5,   7,   7,   7,   7,   8, ...
  1,  1,  5,   8,  12,  12,  12,  13,  15, ...
  1,  1,  6,  13,  20,  21,  20,  24,  28, ...
  1,  1,  7,  21,  33,  37,  33,  44,  52, ...
  1,  1,  8,  34,  54,  65,  54,  81,  96, ...
  1,  1,  9,  55,  88, 114,  88, 149, 177, ...
		

Crossrefs

Columns give: 0, 1: A000012, 2: A001477(n+1), 3: A000045(n+2), 4, 6: A000071(n+3), 5: A005251(n+3), 7: A000073(n+3), 8, 12, 14: A008937(n+1), 9, 11, 13: A049864(n+2), 10: A118870, 15: A000078(n+4), 16, 20, 24, 26, 28, 30: A107066, 17, 19, 23, 25, 29: A210003, 18, 22: A209888, 21: A152718(n+3), 27: A210021, 31: A001591(n+5), 32: A001949(n+5), 33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61: A210031.
Main diagonal equals A234005 or column k=0 of A233940.

Programs

  • Mathematica
    A[n_, k_] := Module[{bb, cnt = 0}, Do[bb = PadLeft[IntegerDigits[j, 2], n]; If[SequencePosition[bb, IntegerDigits[k, 2], 1]=={}, cnt++], {j, 0, 2^n-1 }]; cnt];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 01 2021 *)
Showing 1-2 of 2 results.