cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118886 Numbers expressible as x^2 + x*y + y^2, 0 <= x <= y, in 2 or more ways.

Original entry on oeis.org

49, 91, 133, 147, 169, 196, 217, 247, 259, 273, 301, 343, 361, 364, 399, 403, 427, 441, 469, 481, 507, 511, 532, 553, 559, 588, 589, 637, 651, 676, 679, 703, 721, 741, 763, 777, 784, 793, 817, 819, 868, 871, 889, 903, 931, 949, 961, 973, 988, 1027, 1029, 1036, 1057, 1083, 1092, 1099
Offset: 1

Views

Author

Keywords

Comments

Squares of distances between two points in the triangular lattice in two or more nontrivially different ways.
Numbers whose prime factorization contains at least two (not necessarily distinct) primes congruent to 1 mod 6 and any prime factor congruent to 2 mod 3 has even multiplicity. Products of two elements of A024606.
If k is in the sequence then so is k * m^2 for m > 0. - David A. Corneth, Jun 21 2018

Examples

			a(2) = 91 = 1^2 + 1*9 + 9^2 = 5^2 + 5*6 + 6^2;
a(45) = 931 = 1^2+1*30+30^2 = 9^2+9*25+25^2 = 14^2+14*21+21^2;
a(97) = 1729 = 3^2+3*40+40^2 = 8^2+8*37+37^2 = 15^2+15*32+32^2 = 23^2+23*25+25^2. - _Reinhard Zumkeller_, Oct 30 2011
		

Crossrefs

Subsequence of Loeschian numbers A003136.
Complement of A198772 with respect to A003136.
Subsequences: A198773, A198774, A198775.

Programs

  • Haskell
    a118886 n = a118886_list !! (n-1)
    a118886_list = filter ((> 1) . a088534) a003136_list
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Julia
    function isA118886(n)
        n < 49 && return false
        n % 3 == 2 && return false
        M = Int(round(2*sqrt(n/3)))
        count = 0
        for y in 0:M, x in 0:y
            n == x^2 + y^2 + x*y && (count += 1)
            count == 2 && break
        end
        return count >= 2
    end
    A118886list(upto) = [n for n in 0:upto if isA118886(n)]
    A118886list(1099) |> println # Peter Luschny, Mar 17 2018
  • Mathematica
    amax = 2000; xmax = Sqrt[amax] // Ceiling; Clear[f]; f[_] = 0; Do[q = x^2 + x y + y^2; f[q] = f[q] + 1, {x, 0, xmax}, {y, x, xmax}];
    A118886 = Select[Range[0, 3 xmax^2], # <= amax && f[#] > 1&] (* Jean-François Alcover, Jun 21 2018 *)
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2+z+1), n) > 2;
    select(is, vector(1500,j,j)) \\ Joerg Arndt, Jan 11 2015
    

Formula

A088534(a(n)) > 1. - Reinhard Zumkeller, Oct 30 2011