A118886 Numbers expressible as x^2 + x*y + y^2, 0 <= x <= y, in 2 or more ways.
49, 91, 133, 147, 169, 196, 217, 247, 259, 273, 301, 343, 361, 364, 399, 403, 427, 441, 469, 481, 507, 511, 532, 553, 559, 588, 589, 637, 651, 676, 679, 703, 721, 741, 763, 777, 784, 793, 817, 819, 868, 871, 889, 903, 931, 949, 961, 973, 988, 1027, 1029, 1036, 1057, 1083, 1092, 1099
Offset: 1
Keywords
Examples
a(2) = 91 = 1^2 + 1*9 + 9^2 = 5^2 + 5*6 + 6^2; a(45) = 931 = 1^2+1*30+30^2 = 9^2+9*25+25^2 = 14^2+14*21+21^2; a(97) = 1729 = 3^2+3*40+40^2 = 8^2+8*37+37^2 = 15^2+15*32+32^2 = 23^2+23*25+25^2. - _Reinhard Zumkeller_, Oct 30 2011
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- A. Mazel, I. Stuhl, Y. Suhov, Hard-core configurations on a triangular lattice and Eisenstein primes, arXiv:1803.04041 [math.PR], 2018.
Crossrefs
Programs
-
Haskell
a118886 n = a118886_list !! (n-1) a118886_list = filter ((> 1) . a088534) a003136_list -- Reinhard Zumkeller, Oct 30 2011
-
Julia
function isA118886(n) n < 49 && return false n % 3 == 2 && return false M = Int(round(2*sqrt(n/3))) count = 0 for y in 0:M, x in 0:y n == x^2 + y^2 + x*y && (count += 1) count == 2 && break end return count >= 2 end A118886list(upto) = [n for n in 0:upto if isA118886(n)] A118886list(1099) |> println # Peter Luschny, Mar 17 2018
-
Mathematica
amax = 2000; xmax = Sqrt[amax] // Ceiling; Clear[f]; f[_] = 0; Do[q = x^2 + x y + y^2; f[q] = f[q] + 1, {x, 0, xmax}, {y, x, xmax}]; A118886 = Select[Range[0, 3 xmax^2], # <= amax && f[#] > 1&] (* Jean-François Alcover, Jun 21 2018 *)
-
PARI
is(n)=#bnfisintnorm(bnfinit(z^2+z+1), n) > 2; select(is, vector(1500,j,j)) \\ Joerg Arndt, Jan 11 2015
Formula
A088534(a(n)) > 1. - Reinhard Zumkeller, Oct 30 2011
Comments