A118909 a(1) = 4; a(n) is least semiprime > a(n-1)^2.
4, 21, 445, 198026, 39214296677, 1537761063871773242347, 2364709089560047865452947255794201194068433, 5591849078247910476736920566826713466552016538943524658263883555662554776622687075541
Offset: 1
Examples
a(8) = a(7)^2 + 52 and there is no smaller k such that a(7)^2 + k is semiprime.
Programs
-
Mathematica
nxt[n_]:=Module[{sp=n^2+1},While[PrimeOmega[sp]!=2,sp++];sp]; NestList[nxt,4,7] (* Harvey P. Dale, Oct 22 2012 *)
-
Python
from itertools import accumulate from sympy.ntheory.factor_ import primeomega def nextsemiprime(n): while primeomega(n + 1) != 2: n += 1 return n + 1 def f(anm1, _): return nextsemiprime(anm1**2) print(list(accumulate([4]*6, f))) # Michael S. Branicky, Apr 21 2021
Comments