cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118928 a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(n-k,k+1)/(n-k) * a(k), with a(0)=1.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 38, 92, 238, 643, 1790, 5076, 14573, 42241, 123484, 364052, 1082602, 3247759, 9829820, 30019326, 92517644, 287805801, 903822922, 2865339252, 9168572009, 29601077285, 96377791839, 316264456921
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Invariant column vector V under matrix product A089732 *V = V: a(n) = Sum_{k=0,[n/2]} A089732 (n,k)*a(k), where A089732(n,k) = number of peakless Motzkin paths of length n having k (1,1) steps.

Crossrefs

Cf. A089732.

Programs

  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, Sum[Binomial[n-k, k]*Binomial[n-k, k+1]*a[k]/(n-k), {k, 0, Floor[n/2]}]];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 24 2021 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,binomial(n-k,k)*binomial(n-k,k+1)/(n-k)*a(k)))}
    
  • Sage
    @CachedFunction
    def A118928(n):
        if (n==0): return 1
        else: return sum( binomial(n-k, k)*binomial(n-k, k+1)*A118928(k)/(n-k) for k in (0..n//2) )
    [A118928(n) for n in (0..30)] # G. C. Greubel, Nov 24 2021

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(n-k,k+1)/(n-k) * a(k), with a(0)=1.