cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118973 Number of hill-free Dyck paths of semilength n+2 and having length of first descent equal to 2 (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

1, 0, 2, 5, 16, 51, 168, 565, 1934, 6716, 23604, 83806, 300154, 1083137, 3934404, 14374413, 52787766, 194746632, 721435884, 2682522918, 10008240456, 37455101382, 140569122624, 528926230530, 1994980278636, 7541234323096
Offset: 0

Views

Author

Emeric Deutsch, May 08 2006

Keywords

Comments

Also, for a given j>=2, number of hill-free Dyck paths of semilength n+j and having length of first descent equal to j. a(n)=A000108(n+1)-A000108(n)-[A000957(n+2)-A000957(n+1)]. Columns 2,3,4,... of A118972 (without the initial 0's).

Examples

			a(2)=2 because we have uu(dd)uudd and uuu(dd)udd, where u=(1,1),d=(1,-1) (the first descents are shown between parentheses).
		

Crossrefs

Programs

  • Maple
    F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=(1-z)*C*F: gser:=series(g,z=0,33): seq(coeff(gser,z,n),n=0..28);
    A118973List := proc(m) local A, P, n; A := [1,0]; P := [1,0];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]);
    A := [op(A), P[-1]] od; A end: A118973List(26); # Peter Luschny, Mar 26 2022
  • Mathematica
    CoefficientList[Series[(1-x)*(1-Sqrt[1-4*x])/x/(3-Sqrt[1-4*x])*(1-Sqrt[1-4*x])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • Maxima
    a(n):=(sum((k+2)*(-1)^k*(binomial(2*n-k+1,n-k)/(n+2)-binomial(2*n-k-1,n-k-1)/(n+1)),k,0,n-1))+(-1)^(n); /* Vladimir Kruchinin, Mar 06 2016 */
    
  • PARI
    my(x='x+O('x^25)); Vec((1-x)*(1-sqrt(1-4*x))/x/(3-sqrt(1-4*x))*(1-sqrt(1-4*x))/2/x) \\ G. C. Greubel, Feb 08 2017

Formula

G.f.: (1-x)*C*F, where F = (1-sqrt(1-4*x))/(x*(3-sqrt(1-4*x))) and C = (1-sqrt(1-4*x))/(2*x) is the Catalan function.
a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = (Sum_{k=0..n-1}((k+2)*(-1)^k*(binomial(2*n-k+1,n-k)/(n+2)-binomial(2*n-k-1,n-k-1)/(n+1))))+(-1)^(n). - Vladimir Kruchinin. Mar 06 2016
D-finite with recurrence +2*(n+2)*a(n) +(-7*n-2)*a(n-1) +2*(-3*n+1)*a(n-2) +(7*n-26)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 26 2022