A118994 Number of real n X n symmetric (+1,-1) matrices with positive determinant.
1, 0, 16, 432, 8448, 282240, 81949952, 32715189248, 12792558313472, 9318420858593280
Offset: 1
Programs
-
Maple
F:= proc(n) local Q,q,X,x,t,A,ii,L,v; Q:= [[1,1],seq(seq([i,j],i=2..j),j=2..n)]; q:= nops(Q); X:= [seq(x[q[1],q[2]],q=Q)]; t:= 0: A:= Matrix(n,n,shape=symmetric,symbol=x); A[2..n,1]:= Vector(n-1,1); for ii from 0 to 2^q-1 do L:= map(s -> 2*s-1, convert(2^q+ii,base,2)[1..q]); v:= LinearAlgebra:-Determinant(subs(zip(`=`,X,L),A)); if v > 0 then t:= t+1 fi od; 2^(n-1)*t; end proc: seq(F(n),n=1..7); # Robert Israel, Apr 14 2016
Formula
a(n) = A118992(n) - A118997(n). For odd n, a(n) = A118997(n) = A118992(n)/2. - Max Alekseyev, Jun 12 2025
Extensions
a(8) from Robert Israel, Apr 17 2016
a(9)-a(10) from Max Alekseyev, Jun 17 2025