A119274 Triangle of coefficients of numerators in Padé approximation to exp(x).
1, 2, 1, 12, 6, 1, 120, 60, 12, 1, 1680, 840, 180, 20, 1, 30240, 15120, 3360, 420, 30, 1, 665280, 332640, 75600, 10080, 840, 42, 1, 17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1, 518918400, 259459200, 60540480, 8648640, 831600, 55440, 2520
Offset: 0
Examples
Triangle begins 1, 2, 1, 12, 6, 1, 120, 60, 12, 1, 1680, 840, 180, 20, 1, 30240, 15120, 3360, 420, 30, 1
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (2*n)!/n!, 9); # Peter Luschny, Jan 27 2016
-
Mathematica
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[(2#)!/#!&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
Sage
# uses[bell_transform from A264428] # Adds a column 1,0,0,0,... at the left side of the triangle. def A119274_row(n): multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1)) mfact = [multifact_4_2(k) for k in (0..n)] return bell_transform(n, mfact) [A119274_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015
Formula
Number triangle T(n,k) = C(n,k)(2n-k)!/n!.
After adding a leading column (1,0,0,0,...), the triangle gives the coefficients of the Sheffer associated sequence (binomial-type polynomials) for the delta (lowering) operator D(1-D) with e.g.f. exp[ x * (1 - sqrt(1-4t)) / 2 ] . See Mathworld on Sheffer sequences. See A134685 for relation to Catalan numbers. - Tom Copeland, Feb 09 2008
Comments