A119301 Triangle read by rows: T(n,k) = binomial(3*n-k,n-k).
1, 3, 1, 15, 5, 1, 84, 28, 7, 1, 495, 165, 45, 9, 1, 3003, 1001, 286, 66, 11, 1, 18564, 6188, 1820, 455, 91, 13, 1, 116280, 38760, 11628, 3060, 680, 120, 15, 1, 735471, 245157, 74613, 20349, 4845, 969, 153, 17, 1, 4686825, 1562275, 480700, 134596, 33649, 7315
Offset: 0
Examples
Triangle begins 1, 3, 1, 15, 5, 1, 84, 28, 7, 1, 495, 165, 45, 9, 1, 3003, 1001, 286, 66, 11, 1, 18564, 6188, 1820, 455, 91, 13, 1, 116280, 38760, 11628, 3060, 680, 120, 15, 1 ... Horizontal recurrence: T(4,1) = 1*84 + 2*28 + 3*7 + 4*1 = 165. - _Peter Bala_, Dec 29 2014
Programs
-
Maple
T := proc(n,k) option remember; `if`(n = 0, 1, add(i*T(n-1,k-2+i),i=1..n+1-k)) end: for n from 0 to 9 do print(seq(T(n,k),k=0..n)) od; # Peter Luschny, Dec 30 2014
-
Mathematica
Flatten[Table[Binomial[3n-k,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 28 2012 *)
Formula
G.f. g(x) = 2*sin(arcsin(3*sqrt(3*x)/2)/3)/sqrt(3*x) satisfies g(x) = 1/(1-x*g(x)^2).
Riordan array (1/(1-3*x*g(x)^2),x*g(x)^2) where g(x)=1+x*g(x)^3.
'Horizontal' recurrence equation: T(n,0) = binomial(3*n,n) and for k >= 1, T(n,k) = Sum_{i = 1..n+1-k} i*T(n-1,k-2+i). - Peter Bala, Dec 28 2014
T(n, k) = Sum_{j = 0..n} binomial(n+j-1, j)*binomial(2*n-k-j, n). - Peter Bala, Jun 04 2024
Comments