cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119301 Triangle read by rows: T(n,k) = binomial(3*n-k,n-k).

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 84, 28, 7, 1, 495, 165, 45, 9, 1, 3003, 1001, 286, 66, 11, 1, 18564, 6188, 1820, 455, 91, 13, 1, 116280, 38760, 11628, 3060, 680, 120, 15, 1, 735471, 245157, 74613, 20349, 4845, 969, 153, 17, 1, 4686825, 1562275, 480700, 134596, 33649, 7315
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Comments

First column is A005809. Second column is A025174.
Row sums are A045721. Inverse is Riordan array (1-3x,x(1-x)^2), A119302.

Examples

			Triangle begins
  1,
  3, 1,
  15, 5, 1,
  84, 28, 7, 1,
  495, 165, 45, 9, 1,
  3003, 1001, 286, 66, 11, 1,
  18564, 6188, 1820, 455, 91, 13, 1,
  116280, 38760, 11628, 3060, 680, 120, 15, 1
  ...
Horizontal recurrence: T(4,1) = 1*84 + 2*28 + 3*7 + 4*1 = 165. - _Peter Bala_, Dec 29 2014
		

Crossrefs

Programs

  • Maple
    T := proc(n,k) option remember;
    `if`(n = 0, 1, add(i*T(n-1,k-2+i),i=1..n+1-k)) end:
    for n from 0 to 9 do print(seq(T(n,k),k=0..n)) od; # Peter Luschny, Dec 30 2014
  • Mathematica
    Flatten[Table[Binomial[3n-k,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 28 2012 *)

Formula

G.f. g(x) = 2*sin(arcsin(3*sqrt(3*x)/2)/3)/sqrt(3*x) satisfies g(x) = 1/(1-x*g(x)^2).
Riordan array (1/(1-3*x*g(x)^2),x*g(x)^2) where g(x)=1+x*g(x)^3.
'Horizontal' recurrence equation: T(n,0) = binomial(3*n,n) and for k >= 1, T(n,k) = Sum_{i = 1..n+1-k} i*T(n-1,k-2+i). - Peter Bala, Dec 28 2014
T(n, k) = Sum_{j = 0..n} binomial(n+j-1, j)*binomial(2*n-k-j, n). - Peter Bala, Jun 04 2024