cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A119304 Triangle read by rows: T(n,k) = binomial(4n-k,n-k), 0 <= k <= n.

Original entry on oeis.org

1, 4, 1, 28, 7, 1, 220, 55, 10, 1, 1820, 455, 91, 13, 1, 15504, 3876, 816, 136, 16, 1, 134596, 33649, 7315, 1330, 190, 19, 1, 1184040, 296010, 65780, 12650, 2024, 253, 22, 1, 10518300, 2629575, 593775, 118755, 20475, 2925, 325, 25, 1, 94143280, 23535820
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Examples

			Triangle begins
       1;
       4,     1;
      28,     7,    1;
     220,    55,   10,    1;
    1820,   455,   91,   13,   1;
   15504,  3876,  816,  136,  16,  1;
  134596, 33649, 7315, 1330, 190, 19, 1;
		

Crossrefs

Rows sums are A052203. First column is A005810. Inverse of A119305.

Programs

  • Mathematica
    Flatten[Table[Binomial[4n-k,n-k],{n,0,9},{k,0,n}]] (* Indranil Ghosh, Feb 26 2017 *)
  • PARI
    tabl(nn) = {for (n=0,nn,for (k=0,n,print1(binomial(4*n-k,n-k),", ");); print(););} \\ Indranil Ghosh, Feb 26 2017
    
  • Python
    from sympy import binomial
    i=0
    for n in range(12):
        for k in range(n+1):
            print(str(i)+" "+str(binomial(4*n-k,n-k)))
            i+=1 # Indranil Ghosh, Feb 26 2017

Formula

Riordan array (1/(1-4f(x)),f(x)) where f(x)(1-f(x))^3 = x.
From Peter Bala, Jun 04 2024: (Start)
'Horizontal' recurrence equation: T(n, 0) = binomial(4*n,n) and for k >= 1, T(n, k) = Sum_{i = 1..n+1-k} i*(i+1)/2 * T(n-1, k-2+i).
T(n, k) = Sum_{j = 0..n} binomial(n+j-1, j)*binomial(3*n-k-j, 2*n). (End)

A119306 Expansion of (1-4*x)/(1-x*(1-x)^3).

Original entry on oeis.org

1, -3, -6, 6, 14, -19, -37, 56, 96, -164, -247, 477, 630, -1378, -1590, 3957, 3963, -11300, -9728, 32104, 23425, -90771, -55006, 255478, 124758, -715923, -268757, 1997808, 531552, -5552220, -884695, 15368813, 834686, -42373618, 2113458, 116369557, -17926357
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Comments

Row sums of number triangle A119305.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 4 x)/(1 - x (1 - x)^3), {x, 0, 36}], x] (* or *) LinearRecurrence[{1, -3, 3, -1}, {1, -3, -6, 6}, 37] (* or *) Table[Sum[(Binomial[3 k, n - k] + 4 Binomial[3 k, n - k - 1]) (-1)^(n - k), {k, 0, n}], {n, 0, 36}] (* Indranil Ghosh, Feb 27 2017 *)
  • PARI
    a(n) = sum(k=0,n,(binomial(3*k,n-k)+4*binomial(3*k,n-k-1))*(-1)^(n-k)); \\ Indranil Ghosh, Feb 27 2017

Formula

G.f.: (1 - 4*x)/(1 - x + 3*x^2 - 3*x^3 + x^4).
a(n) = a(n-1) - 3*a(n-2) + 3*a(n-3) - a(n-4).
a(n) = Sum_{k=0..n} (C(3*k,n-k) + 4*C(3*k,n-k-1))*(-1)^(n-k).
Showing 1-2 of 2 results.