cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A119301 Triangle read by rows: T(n,k) = binomial(3*n-k,n-k).

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 84, 28, 7, 1, 495, 165, 45, 9, 1, 3003, 1001, 286, 66, 11, 1, 18564, 6188, 1820, 455, 91, 13, 1, 116280, 38760, 11628, 3060, 680, 120, 15, 1, 735471, 245157, 74613, 20349, 4845, 969, 153, 17, 1, 4686825, 1562275, 480700, 134596, 33649, 7315
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Comments

First column is A005809. Second column is A025174.
Row sums are A045721. Inverse is Riordan array (1-3x,x(1-x)^2), A119302.

Examples

			Triangle begins
  1,
  3, 1,
  15, 5, 1,
  84, 28, 7, 1,
  495, 165, 45, 9, 1,
  3003, 1001, 286, 66, 11, 1,
  18564, 6188, 1820, 455, 91, 13, 1,
  116280, 38760, 11628, 3060, 680, 120, 15, 1
  ...
Horizontal recurrence: T(4,1) = 1*84 + 2*28 + 3*7 + 4*1 = 165. - _Peter Bala_, Dec 29 2014
		

Crossrefs

Programs

  • Maple
    T := proc(n,k) option remember;
    `if`(n = 0, 1, add(i*T(n-1,k-2+i),i=1..n+1-k)) end:
    for n from 0 to 9 do print(seq(T(n,k),k=0..n)) od; # Peter Luschny, Dec 30 2014
  • Mathematica
    Flatten[Table[Binomial[3n-k,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 28 2012 *)

Formula

G.f. g(x) = 2*sin(arcsin(3*sqrt(3*x)/2)/3)/sqrt(3*x) satisfies g(x) = 1/(1-x*g(x)^2).
Riordan array (1/(1-3*x*g(x)^2),x*g(x)^2) where g(x)=1+x*g(x)^3.
'Horizontal' recurrence equation: T(n,0) = binomial(3*n,n) and for k >= 1, T(n,k) = Sum_{i = 1..n+1-k} i*T(n-1,k-2+i). - Peter Bala, Dec 28 2014
T(n, k) = Sum_{j = 0..n} binomial(n+j-1, j)*binomial(2*n-k-j, n). - Peter Bala, Jun 04 2024

A119305 Riordan array (1-4x, x(1-x)^3).

Original entry on oeis.org

1, -4, 1, 0, -7, 1, 0, 15, -10, 1, 0, -13, 39, -13, 1, 0, 4, -80, 72, -16, 1, 0, 0, 95, -228, 114, -19, 1, 0, 0, -66, 462, -484, 165, -22, 1, 0, 0, 25, -630, 1375, -875, 225, -25, 1, 0, 0, -4, 588, -2772, 3185, -1428, 294, -28, 1, 0, 0, 0, -372, 4092, -8463, 6324, -2170, 372
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Comments

Inverse of number triangle binomial(4n-k, n-k), A119304. Row sums are A119306.

Examples

			Triangle begins
   1;
  -4,    1;
   0,   -7,    1;
   0,   15,  -10,    1;
   0,  -13,   39,  -13,    1;
   0,    4,  -80,   72,  -16,    1;
   0,    0,   95, -228,  114,  -19,    1;
		

Programs

  • Mathematica
    Flatten[Table[(Binomial[3k,n-k]+4Binomial[3k,n-k-1])*(-1)^(n-k),{n,0,11},{k,0,n}]] (* Indranil Ghosh, Feb 26 2017 *)
  • PARI
    tabl(nn) = {for (n=0,nn,for (k=0,n,print1((binomial(3*k,n-k)+4*binomial(3*k,n-k-1))*(-1)^(n-k),", "););print(););} \\ Indranil Ghosh, Feb 26 2017

Formula

Number triangle T(n,k) = (C(3k, n-k) + 4*C(3k, n-k-1))(-1)^(n-k).
Showing 1-2 of 2 results.