A119308 Triangle for first differences of Catalan numbers.
1, 2, 1, 3, 5, 1, 4, 14, 9, 1, 5, 30, 40, 14, 1, 6, 55, 125, 90, 20, 1, 7, 91, 315, 385, 175, 27, 1, 8, 140, 686, 1274, 980, 308, 35, 1, 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1, 10, 285, 2430, 8568, 14112, 11340, 4410, 780, 54, 1, 11, 385, 4125
Offset: 0
Examples
Triangle begins: 1; 2, 1; 3, 5, 1; 4, 14, 9, 1; 5, 30, 40, 14, 1; 6, 55, 125, 90, 20, 1; 7, 91, 315, 385, 175, 27, 1; 8, 140, 686, 1274, 980, 308, 35, 1; 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;
Links
- Indranil Ghosh, Rows 0..100, flattened
- Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
Programs
-
Mathematica
a[k_,j_]:=If[k<=j,Binomial[j+1,2(j-k)]*CatalanNumber[j-k],0]; Flatten[Table[Sum[Binomial[n,j]*a[k,j],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
-
PARI
catalan(n)=binomial(2*n,n)/(n+1); a(k,j)=if (k<=j,binomial(j+1,2*(j-k))*catalan(j-k),0); tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n,j)*a(k,j)),", "););print(););}; tabl(10); \\ Indranil Ghosh, Mar 03 2017
Formula
T(n,k) = Sum_{j=0..n} C(n,j)*[k<=j]*C(j+1,k+1)*C(k+1,j-k)/(j-k+1).
Column k has g.f.: sum{j=0..k, C(k,j)*C(k+1,j)x^j/(j+1)}*x^k/(1-x)^(2(k+1)).
T(n,k) = Sum_{j=0..n} C(n,j)*if(k<=j, C(j+1,2(j-k))*A000108(j-k), 0).
G.f.: (((x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+(-x^2-x)*y+x^2-2*x+1)/(2*x^3*y^2)). - Vladimir Kruchinin, Nov 15 2020
T(n,k) = C(n+1,k)*(2*C(n+1,k+2)+C(n+1,k+1))/(n+1). - Vladimir Kruchinin, Nov 16 2020
Comments