cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119308 Triangle for first differences of Catalan numbers.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 14, 9, 1, 5, 30, 40, 14, 1, 6, 55, 125, 90, 20, 1, 7, 91, 315, 385, 175, 27, 1, 8, 140, 686, 1274, 980, 308, 35, 1, 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1, 10, 285, 2430, 8568, 14112, 11340, 4410, 780, 54, 1, 11, 385, 4125
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Comments

Row sums are A000245(n+1). Columns include A000330, A006414, as well as certain Kekulé numbers (A114242, A108647, ...).
Diagonal sums are A188460.
Coefficient array of the second column of the inverse of the Riordan array ((1+r*x)/(1+(r+1)x+r*x^2), x/(1+(r+1)x+r*x^2)). - Paul Barry, Apr 01 2011

Examples

			Triangle begins:
1;
2,   1;
3,   5,    1;
4,  14,    9,    1;
5,  30,   40,   14,    1;
6,  55,  125,   90,   20,    1;
7,  91,  315,  385,  175,   27,   1;
8, 140,  686, 1274,  980,  308,  35,  1;
9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;
		

Crossrefs

Programs

  • Mathematica
    a[k_,j_]:=If[k<=j,Binomial[j+1,2(j-k)]*CatalanNumber[j-k],0];
    Flatten[Table[Sum[Binomial[n,j]*a[k,j],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    catalan(n)=binomial(2*n,n)/(n+1);
    a(k,j)=if (k<=j,binomial(j+1,2*(j-k))*catalan(j-k),0);
    tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n,j)*a(k,j)),", "););print(););};
    tabl(10); \\ Indranil Ghosh, Mar 03 2017

Formula

T(n,k) = Sum_{j=0..n} C(n,j)*[k<=j]*C(j+1,k+1)*C(k+1,j-k)/(j-k+1).
Column k has g.f.: sum{j=0..k, C(k,j)*C(k+1,j)x^j/(j+1)}*x^k/(1-x)^(2(k+1)).
T(n,k) = Sum_{j=0..n} C(n,j)*if(k<=j, C(j+1,2(j-k))*A000108(j-k), 0).
G.f.: (((x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+(-x^2-x)*y+x^2-2*x+1)/(2*x^3*y^2)). - Vladimir Kruchinin, Nov 15 2020
T(n,k) = C(n+1,k)*(2*C(n+1,k+2)+C(n+1,k+1))/(n+1). - Vladimir Kruchinin, Nov 16 2020