A119326 Number triangle T(n,k) = Sum_{j=0..n-k} C(k,2j)*C(n-k,2j).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 7, 10, 7, 1, 1, 1, 1, 11, 19, 19, 11, 1, 1, 1, 1, 16, 31, 38, 31, 16, 1, 1, 1, 1, 22, 46, 66, 66, 46, 22, 1, 1, 1, 1, 29, 64, 106, 126, 106, 64, 29, 1, 1, 1, 1, 37, 85, 162, 226, 226, 162, 85, 37, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 1, 2, 1, 1; 1, 1, 4, 4, 1, 1; 1, 1, 7, 10, 7, 1, 1; 1, 1, 11, 19, 19, 11, 1, 1; ...
References
- Lukas Spiegelhofer and Jeffrey Shallit, Continuants, Run Lengths, and Barry's Modified Pascal Triangle, Volume 26(1) 2019, of The Electronic Journal of Combinatorics, #P1.31.
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- Jeffrey Shallit, Lukas Spiegelhofer, Continuants, run lengths, and Barry's modified Pascal triangle, arXiv:1710.06203 [math.CO], 2017.
Crossrefs
Cf. A119358.
Formula
Column k has g.f.: (x^k/(1-x))* Sum{j=0..k} C(k,2j)*(x/(1-x))^(2j).
T(2n,n) = A119358(n). - Alois P. Heinz, Aug 31 2018
Comments