A119359
Central coefficients of number triangle A119326.
Original entry on oeis.org
0, 1, 1, 7, 31, 106, 386, 1499, 5755, 21886, 83854, 323302, 1248534, 4828916, 18719364, 72711123, 282867795, 1101981430, 4298723990, 16788997874, 65641296578, 256895812108, 1006307847324, 3945185527582, 15478851119966
Offset: 0
-
Table[HypergeometricPFQ[{-1/2 - n/2, 1/2 - n/2, 1 - n/2, -n/2}, {1/2, 1/2, 1}, 1] - KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)
Table[(2^n Binomial[1/2, (n+1)/2] + Binomial[n, n/2] Cos[Pi n/2] + n CatalanNumber[n])/2 - KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 06 2016 *)
A034839
Triangular array formed by taking every other term of each row of Pascal's triangle.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 10, 5, 1, 15, 15, 1, 1, 21, 35, 7, 1, 28, 70, 28, 1, 1, 36, 126, 84, 9, 1, 45, 210, 210, 45, 1, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 1, 78, 715, 1716, 1287, 286, 13
Offset: 0
Triangular array begins:
1
1
1 1
1 3
1 6 1
1 10 5
1 15 15 1
...
cosh(4x) = (cosh x)^5 + 10 (cosh x)^3 (sinh x)^2 + 5 (cosh x) (sinh x)^4, so row 4 is (1,10,5). See Mathematica program. - _Clark Kimberling_, Aug 03 2024
- G. C. Greubel, Table of n, a(n) for the first 101 rows, flattened
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- H. Chan, S. Cooper, and P. Toh, The 26th power of Dedekind's eta function Advances in Mathematics, 207 (2006) 532-543.
- Tom Copeland, Juggling Zeros in the Matrix: Example II, 2020.
- C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
- Tian Han and Sergey Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023.
- S.-M. Ma, On some binomial coefficients related to the evaluation of tan(nx), arXiv preprint arXiv:1205.0735 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 13 2012
- K. Oliver and H. Prodinger, The continued fraction expansion of Gauss' hypergeometric function and a new application to the tangent function, Transactions of the Royal Society of South Africa, Vol. 76 (2012), 151-154, [DOI]; [PDF]. - From _N. J. A. Sloane_, Jan 03 2013
- Eric Weisstein's World of Mathematics, Tangent [From _Eric W. Weisstein_, Oct 18 2008]
-
/* As a triangle */ [[Binomial(n,2*k):k in [0..Floor(n/2)]] : n in [0..10]]; // G. C. Greubel, Feb 23 2018
-
for n from 0 to 13 do seq(binomial(n,2*k),k=0..floor(n/2)) od;# yields sequence in triangular form; # Emeric Deutsch, Mar 30 2005
-
u[1, x_] := 1; v[1, x_] := 1; z = 12;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu] (* A034839 as a triangle *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv] (* A034867 as a triangle *)
(* Clark Kimberling, Feb 18 2012 *)
Table[Binomial[n, k], {n, 0, 13}, {k, 0, Floor[n, 2], 2}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
(* The triangle gives coefficients for cosh(nx) as a linear combination of products (cosh(x)^h)*(sinh(x)^k) *)
Column[Table[TrigExpand[Cosh[n x]], {n, 0, 10}]]
(* Clark Kimberling, Aug 03 2024 *)
-
for(n=0,15, for(k=0,floor(n/2), print1(binomial(n, 2*k), ", "))) \\ G. C. Greubel, Feb 23 2018
A119358
Number of n-element subsets of [2n] having an even sum.
Original entry on oeis.org
1, 1, 2, 10, 38, 126, 452, 1716, 6470, 24310, 92252, 352716, 1352540, 5200300, 20056584, 77558760, 300546630, 1166803110, 4537543340, 17672631900, 68923356788, 269128937220, 1052049129144, 4116715363800, 16123803193628, 63205303218876, 247959261273752
Offset: 0
a(3) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}. - _Alois P. Heinz_, Feb 04 2017
-
a:= proc(n) option remember; `if`(n<3, 1+n*(n-1)/2,
((4*n-10)*(5*n^2-10*n+4)*(a(n-1)+4*(n-2)*a(n-3)
/(n-1))/(5*n^2-20*n+19)-4*(n-1)*a(n-2))/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 26 2018
-
Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1/2, 1/2, 1}, 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)
A119335
Number triangle T(n,k) = Sum_{j=0..n-k} C(k,3j)*C(n-k,3j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 11, 17, 11, 1, 1, 1, 1, 1, 1, 21, 41, 41, 21, 1, 1, 1, 1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1, 1, 1, 1, 57, 141, 201, 201, 141, 57, 1, 1, 1
Offset: 0
Triangle begins
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1;
1, 1, 1, 2, 1, 1, 1;
1, 1, 1, 5, 5, 1, 1, 1;
1, 1, 1, 11, 17, 11, 1, 1, 1;
1, 1, 1, 21, 41, 41, 21, 1, 1, 1;
1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1;
-
T[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 14 2023 *)
A119328
Number triangle T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i-k, C(k,2j)*C(i-k,2j)}}.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 1, -2, 1, 0, -1, 4, -3, 1, 0, 1, -6, 9, -4, 1, 0, -1, 8, -19, 16, -5, 1, 0, 1, -10, 33, -44, 25, -6, 1, 0, -1, 12, -51, 96, -85, 36, -7, 1, 0, 1, -14, 73, -180, 225, -146, 49, -8, 1, 0, -1, 16, -99, 304, -501, 456, -231, 64, -9, 1
Offset: 0
Triangle begins
1,
0, 1,
0, -1, 1,
0, 1, -2, 1,
0, -1, 4, -3, 1,
0, 1, -6, 9, -4, 1,
0, -1, 8, -19, 16, -5, 1,
0, 1, -10, 33, -44, 25, -6, 1,
0, -1, 12, -51, 96, -85, 36, -7, 1,
0, 1, -14, 73, -180, 225, -146, 49, -8, 1,
0, -1, 16, -99, 304, -501, 456, -231, 64, -9, 1
-
t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n, i]*Sum[Binomial[k, 2 j]*Binomial[i - k, 2 j], {j, 0, i - k}], {i, 0, n}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 25 2013 *)
A307090
Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,2*j) * binomial(n-k,2*j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -2, -2, 1, 1, 1, 1, -5, -8, -5, 1, 1, 1, 1, -9, -17, -17, -9, 1, 1, 1, 1, -14, -29, -34, -29, -14, 1, 1, 1, 1, -20, -44, -54, -54, -44, -20, 1, 1, 1, 1, -27, -62, -74, -74, -74, -62, -27, 1, 1, 1, 1, -35, -83, -90, -74, -74, -90, -83, -35, 1, 1
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8
----+-------------------------------------
0 | 1;
1 | 1, 1;
2 | 1, 1, 1;
3 | 1, 1, 1, 1;
4 | 1, 1, 0, 1, 1;
5 | 1, 1, -2, -2, 1, 1;
6 | 1, 1, -5, -8, -5, 1, 1;
7 | 1, 1, -9, -17, -17, -9, 1, 1;
8 | 1, 1, -14, -29, -34, -29, -14, 1, 1;
-
T[n_, k_] := Sum[(-1)^j * Binomial[k, 2*j] * Binomial[n - k, 2*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 20 2021 *)
A307156
Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,3*j) * binomial(n-k,3*j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, -9, -15, -9, 1, 1, 1, 1, 1, 1, -19, -39, -39, -19, 1, 1, 1, 1, 1, 1, -34, -79, -99, -79, -34, 1, 1, 1, 1, 1, 1, -55, -139, -199, -199, -139, -55, 1, 1, 1
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8
----+-------------------------------
0 | 1;
1 | 1, 1;
2 | 1, 1, 1;
3 | 1, 1, 1, 1;
4 | 1, 1, 1, 1, 1;
5 | 1, 1, 1, 1, 1, 1;
6 | 1, 1, 1, 0, 1, 1, 1;
7 | 1, 1, 1, -3, -3, 1, 1, 1;
8 | 1, 1, 1, -9, -15, -9, 1, 1, 1;
-
T[n_, k_] := Sum[(-1)^j * Binomial[k, 3*j] * Binomial[n - k, 3*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 20 2021 *)
A119327
Expansion of (1-4x+12x^2-16x^3+8x^4)/(1-x)^5.
Original entry on oeis.org
1, 1, 7, 19, 38, 66, 106, 162, 239, 343, 481, 661, 892, 1184, 1548, 1996, 2541, 3197, 3979, 4903, 5986, 7246, 8702, 10374, 12283, 14451, 16901, 19657, 22744, 26188, 30016, 34256, 38937, 44089, 49743, 55931, 62686, 70042, 78034, 86698, 96071
Offset: 0
-
LinearRecurrence[{5,-10,10,-5,1},{1,1,7,19,38},41] (* James C. McMahon, Sep 15 2024 *)
-
N=66; x='x+O('x^N); Vec((1-4*x+12*x^2-16*x^3+8*x^4)/(1-x)^5) \\ Seiichi Manyama, Mar 11 2019
A119329
Number triangle T(n,k)=sum{j=0..n-k, C(k,2j)C(n-k,2j)*2^j}.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 13, 19, 13, 1, 1, 1, 1, 21, 37, 37, 21, 1, 1, 1, 1, 31, 61, 77, 61, 31, 1, 1, 1, 1, 43, 91, 141, 141, 91, 43, 1, 1, 1, 1, 57, 127, 241, 301, 241, 127, 57, 1, 1
Offset: 0
Triangle begins
1,
1, 1,
1, 1, 1,
1, 1, 1, 1,
1, 1, 3, 1, 1,
1, 1, 7, 7, 1, 1,
1, 1, 13, 19, 13, 1, 1,
1, 1, 21, 37, 37, 21, 1, 1
Showing 1-9 of 9 results.
Comments