A119365
Generalized Catalan numbers for triangle A119335.
Original entry on oeis.org
1, 0, 0, 1, 6, 20, 51, 126, 392, 1513, 5877, 21054, 71270, 242463, 863590, 3193737, 11889414, 43783908, 159998493, 586908936, 2175907284, 8138471667, 30541703733, 114620380032, 430344635913, 1619584557885, 6116422089050
Offset: 0
-
A119365 := proc(n)
local k;
if n = 0 then
return 1
end if;
a := 0 ;
for k from 0 to n do
if modp(n-k,3) = 0 then
a := a+binomial(n,k)*binomial(n,k+1) ;
end if;
end do:
a/n;
end proc:
seq(A119365(n),n=0..40) ; # R. J. Mathar, Oct 30 2014
-
A119335[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}];
a[n_] := A119335[2n, n] - A119335[2n, n+1];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Sep 14 2023 *)
A119364
Central coefficients of number triangle A119335.
Original entry on oeis.org
0, 1, 1, 1, 11, 81, 351, 1149, 3529, 12601, 52724, 222641, 879308, 3295384, 12303201, 47320365, 186738507, 739129809, 2894481813, 11237844615, 43647142533, 170543919327, 669744238998, 2633027605209, 10337488816041, 40544676533466
Offset: 0
A119363
a(n) = Sum_{k=0..n} C(n,3k)^2.
Original entry on oeis.org
1, 1, 1, 2, 17, 101, 402, 1275, 3921, 14114, 58601, 243695, 950578, 3537847, 13166791, 50514102, 198627921, 782913717, 3054480306, 11824753551, 45823049817, 178682390994, 700285942731, 2747647985241, 10767833451954, 42164261091351, 165225573240651
Offset: 0
Central coefficients of number triangle
A119335.
-
Table[Sum[Binomial[n,3k]^2, {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Mar 12 2019 *)
Table[HypergeometricPFQ[{1/3 - n/3, 1/3 - n/3, 2/3 - n/3, 2/3 - n/3, -n/3, -n/3}, {1/3, 1/3, 2/3, 2/3, 1}, 1], {n, 0, 30}] (* Vaclav Kotesovec, Mar 12 2019 *)
A119336
Expansion of (1-x)^4/((1-x)^6 - x^6).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 16, 45, 130, 341, 804, 1730, 3460, 6555, 12016, 21845, 40410, 77540, 155080, 320001, 669526, 1398101, 2884776, 5858126, 11716252, 23166783, 45536404, 89478485, 176565486, 350739488, 701478976, 1410132405, 2841788170
Offset: 0
-
CoefficientList[Series[(1-x)^4/((1-x)^6-x^6),{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6},{1,2,3,4,5},40] (* Harvey P. Dale, Dec 25 2015 *)
-
{a(n) = sum(k=0, n\6, binomial(n+1, 6*k+1))} \\ Seiichi Manyama, Mar 22 2019
A307090
Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,2*j) * binomial(n-k,2*j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -2, -2, 1, 1, 1, 1, -5, -8, -5, 1, 1, 1, 1, -9, -17, -17, -9, 1, 1, 1, 1, -14, -29, -34, -29, -14, 1, 1, 1, 1, -20, -44, -54, -54, -44, -20, 1, 1, 1, 1, -27, -62, -74, -74, -74, -62, -27, 1, 1, 1, 1, -35, -83, -90, -74, -74, -90, -83, -35, 1, 1
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8
----+-------------------------------------
0 | 1;
1 | 1, 1;
2 | 1, 1, 1;
3 | 1, 1, 1, 1;
4 | 1, 1, 0, 1, 1;
5 | 1, 1, -2, -2, 1, 1;
6 | 1, 1, -5, -8, -5, 1, 1;
7 | 1, 1, -9, -17, -17, -9, 1, 1;
8 | 1, 1, -14, -29, -34, -29, -14, 1, 1;
-
T[n_, k_] := Sum[(-1)^j * Binomial[k, 2*j] * Binomial[n - k, 2*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 20 2021 *)
A307156
Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,3*j) * binomial(n-k,3*j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, -9, -15, -9, 1, 1, 1, 1, 1, 1, -19, -39, -39, -19, 1, 1, 1, 1, 1, 1, -34, -79, -99, -79, -34, 1, 1, 1, 1, 1, 1, -55, -139, -199, -199, -139, -55, 1, 1, 1
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8
----+-------------------------------
0 | 1;
1 | 1, 1;
2 | 1, 1, 1;
3 | 1, 1, 1, 1;
4 | 1, 1, 1, 1, 1;
5 | 1, 1, 1, 1, 1, 1;
6 | 1, 1, 1, 0, 1, 1, 1;
7 | 1, 1, 1, -3, -3, 1, 1, 1;
8 | 1, 1, 1, -9, -15, -9, 1, 1, 1;
-
T[n_, k_] := Sum[(-1)^j * Binomial[k, 3*j] * Binomial[n - k, 3*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 20 2021 *)
A119337
Number triangle T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i-k, C(k,3j)*C(i-k,3j)}}.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 1, -2, 1, 0, -1, 3, -3, 1, 0, 1, -4, 6, -4, 1, 0, -1, 5, -9, 10, -5, 1, 0, 1, -6, 12, -16, 15, -6, 1, 0, -1, 7, -15, 19, -25, 21, -7, 1, 0, 1, -8, 18, -16, 20, -36, 28, -8, 1, 0, -1, 9, -21, 4, 24, 6, -49, 36, -9, 1
Offset: 0
Triangle begins
1,
0, 1,
0, -1, 1,
0, 1, -2, 1,
0, -1, 3, -3, 1,
0, 1, -4, 6, -4, 1,
0, -1, 5, -9, 10, -5, 1,
0, 1, -6, 12, -16, 15, -6, 1,
0, -1, 7, -15, 19, -25, 21, -7, 1,
0, 1, -8, 18, -16, 20, -36, 28, -8, 1,
0, -1, 9, -21, 4, 24, 6, -49, 36, -9, 1
Showing 1-7 of 7 results.
Comments