cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307091 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n,2*k)^2.

Original entry on oeis.org

1, 1, 0, -8, -34, -74, 0, 736, 3334, 7606, 0, -80464, -372436, -864772, 0, 9400192, 43976774, 103061158, 0, -1137528688, -5355697084, -12623082284, 0, 140697113792, 665238165916, 1574005263676, 0, -17663830073504, -83769667651816, -198760191043784, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2019

Keywords

Crossrefs

Central coefficients of number triangle A307090.

Programs

  • Mathematica
    Table[Sum[(-1)^k*Binomial[n, 2*k]^2, {k, 0, Floor[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 24 2019 *)
    Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1/2, 1/2, 1}, -1], {n, 0, 30}] (* Vaclav Kotesovec, Mar 24 2019 *)
  • PARI
    {a(n) = sum(k=0, n\2, (-1)^k*binomial(n, 2*k)^2)}

Formula

a(4*n+2) = 0 for n >= 0.
From Peter Bala, Mar 17 2023: (Start)
n*(n-1)*(6*n^2-24*n+23)a(n) = 4*(n-1)*(2*n-3)*(3*n^2-9*n+4)*a(n-1) - 4*(3*n^2-9*n+4)*(2*n-3)^2*a(n-2) - 8*(n-2)*(2*n-3)*(3*n^2-9*n+4)*a(n-3) - 4*(n-2)*(n-3)*(6*n^2-12*n+5)*a(n-4) with a(0) = 1, a(1) = 1, a(2) = 0 and a(3) = -8.
a(n) = hypergeom([(1-n)/2, (1-n)/2, -n/2, -n/2], [1/2, 1/2, 1], -1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 3. (End)

A307156 Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,3*j) * binomial(n-k,3*j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, -9, -15, -9, 1, 1, 1, 1, 1, 1, -19, -39, -39, -19, 1, 1, 1, 1, 1, 1, -34, -79, -99, -79, -34, 1, 1, 1, 1, 1, 1, -55, -139, -199, -199, -139, -55, 1, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2019

Keywords

Examples

			Triangle begins:
n\k | 0  1  2   3    4   5  6  7  8
----+-------------------------------
0   | 1;
1   | 1, 1;
2   | 1, 1, 1;
3   | 1, 1, 1,  1;
4   | 1, 1, 1,  1,   1;
5   | 1, 1, 1,  1,   1,  1;
6   | 1, 1, 1,  0,   1,  1, 1;
7   | 1, 1, 1, -3,  -3,  1, 1, 1;
8   | 1, 1, 1, -9, -15, -9, 1, 1, 1;
		

Crossrefs

Row sums give A307089.
T(2*n,n) gives A307158.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j * Binomial[k, 3*j] * Binomial[n - k, 3*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 20 2021 *)
Showing 1-2 of 2 results.