cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307090 Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,2*j) * binomial(n-k,2*j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -2, -2, 1, 1, 1, 1, -5, -8, -5, 1, 1, 1, 1, -9, -17, -17, -9, 1, 1, 1, 1, -14, -29, -34, -29, -14, 1, 1, 1, 1, -20, -44, -54, -54, -44, -20, 1, 1, 1, 1, -27, -62, -74, -74, -74, -62, -27, 1, 1, 1, 1, -35, -83, -90, -74, -74, -90, -83, -35, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2019

Keywords

Examples

			Triangle begins:
n\k | 0  1    2    3    4    5    6  7  8
----+-------------------------------------
0   | 1;
1   | 1, 1;
2   | 1, 1,   1;
3   | 1, 1,   1,   1;
4   | 1, 1,   0,   1,   1;
5   | 1, 1,  -2,  -2,   1,   1;
6   | 1, 1,  -5,  -8,  -5,   1,   1;
7   | 1, 1,  -9, -17, -17,  -9,   1, 1;
8   | 1, 1, -14, -29, -34, -29, -14, 1, 1;
		

Crossrefs

Row sums give A099587(n+1).
T(2*n,n) gives A307091.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j * Binomial[k, 2*j] * Binomial[n - k, 2*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 20 2021 *)

A307158 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n,3*k)^2.

Original entry on oeis.org

1, 1, 1, 0, -15, -99, -398, -1175, -2351, 0, 29601, 183195, 756978, 2351805, 4885791, 0, -63746991, -400000275, -1675991918, -5274560891, -11081420615, 0, 147257373891, 931226954949, 3929550225586, 12446852889901, 26304183607651, 0, -353181028924809
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2019

Keywords

Crossrefs

Central coefficients of number triangle A307156.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * Binomial[n,3*k]^2, {k, 0, Floor[n/3]}]; Array[a, 30, 0] (* Amiram Eldar, May 20 2021 *)
  • PARI
    {a(n) = sum(k=0, n\3, (-1)^k*binomial(n, 3*k)^2)}

Formula

a(6*n+3) = 0 for n >= 0.
Showing 1-2 of 2 results.