cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A119335 Number triangle T(n,k) = Sum_{j=0..n-k} C(k,3j)*C(n-k,3j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 11, 17, 11, 1, 1, 1, 1, 1, 1, 21, 41, 41, 21, 1, 1, 1, 1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1, 1, 1, 1, 57, 141, 201, 201, 141, 57, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, May 14 2006

Keywords

Comments

Row sums are A119336. Product of Pascal's triangle and A119337.

Examples

			Triangle begins
1;
1, 1;
1, 1, 1;
1, 1, 1,  1;
1, 1, 1,  1,  1;
1, 1, 1,  1,  1,   1;
1, 1, 1,  2,  1,   1,  1;
1, 1, 1,  5,  5,   1,  1,  1;
1, 1, 1, 11, 17,  11,  1,  1, 1;
1, 1, 1, 21, 41,  41, 21,  1, 1, 1;
1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1;
		

Crossrefs

T(2n,n) gives A119363.
Cf. A119326.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 14 2023 *)

Formula

Column k has g.f. (x^k/(1-x)) * Sum_{j=0..k} C(k,3j)(x/(1-x))^(3j).

Extensions

More terms from Seiichi Manyama, Mar 12 2019

A139469 a(n) = Sum_{k=0..n} C(n,3k+2)^2.

Original entry on oeis.org

0, 0, 1, 9, 36, 101, 261, 882, 3921, 17253, 67554, 243695, 876789, 3324906, 13166791, 52301709, 203824548, 782913717, 3010327497, 11695756698, 45823049817, 179787741723, 703527078258, 2747647985241, 10739885115573, 42082084255050, 165225573240651
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2008

Keywords

Comments

The recurrence is same as for A119363. - Vaclav Kotesovec, Mar 12 2019

Crossrefs

Programs

  • Magma
    [&+[Binomial(n, 3*k+2)^2: k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Mar 14 2019
  • Mathematica
    Table[Sum[Binomial[n, 3*k + 2]^2, {k, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Mar 12 2019 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, 3*k+2)^2); \\ Michel Marcus, Mar 12 2019
    

Formula

a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 12 2019

A139468 a(n) = Sum{k=0..n} C(n,3k+1)^2.

Original entry on oeis.org

0, 1, 4, 9, 17, 50, 261, 1275, 5028, 17253, 58601, 218042, 876789, 3537847, 13783018, 52301709, 198627921, 767778786, 3010327497, 11824753551, 46200429186, 179787741723, 700285942731, 2738134757118, 10739885115573, 42164261091351, 165467386466802
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2008

Keywords

Comments

The recurrence is same as for A119363. - Vaclav Kotesovec, Mar 12 2019

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,3k+1]^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Sep 08 2018 *)

Formula

a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 12 2019

A307091 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n,2*k)^2.

Original entry on oeis.org

1, 1, 0, -8, -34, -74, 0, 736, 3334, 7606, 0, -80464, -372436, -864772, 0, 9400192, 43976774, 103061158, 0, -1137528688, -5355697084, -12623082284, 0, 140697113792, 665238165916, 1574005263676, 0, -17663830073504, -83769667651816, -198760191043784, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2019

Keywords

Crossrefs

Central coefficients of number triangle A307090.

Programs

  • Mathematica
    Table[Sum[(-1)^k*Binomial[n, 2*k]^2, {k, 0, Floor[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 24 2019 *)
    Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1/2, 1/2, 1}, -1], {n, 0, 30}] (* Vaclav Kotesovec, Mar 24 2019 *)
  • PARI
    {a(n) = sum(k=0, n\2, (-1)^k*binomial(n, 2*k)^2)}

Formula

a(4*n+2) = 0 for n >= 0.
From Peter Bala, Mar 17 2023: (Start)
n*(n-1)*(6*n^2-24*n+23)a(n) = 4*(n-1)*(2*n-3)*(3*n^2-9*n+4)*a(n-1) - 4*(3*n^2-9*n+4)*(2*n-3)^2*a(n-2) - 8*(n-2)*(2*n-3)*(3*n^2-9*n+4)*a(n-3) - 4*(n-2)*(n-3)*(6*n^2-12*n+5)*a(n-4) with a(0) = 1, a(1) = 1, a(2) = 0 and a(3) = -8.
a(n) = hypergeom([(1-n)/2, (1-n)/2, -n/2, -n/2], [1/2, 1/2, 1], -1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 3. (End)

A307158 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n,3*k)^2.

Original entry on oeis.org

1, 1, 1, 0, -15, -99, -398, -1175, -2351, 0, 29601, 183195, 756978, 2351805, 4885791, 0, -63746991, -400000275, -1675991918, -5274560891, -11081420615, 0, 147257373891, 931226954949, 3929550225586, 12446852889901, 26304183607651, 0, -353181028924809
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2019

Keywords

Crossrefs

Central coefficients of number triangle A307156.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * Binomial[n,3*k]^2, {k, 0, Floor[n/3]}]; Array[a, 30, 0] (* Amiram Eldar, May 20 2021 *)
  • PARI
    {a(n) = sum(k=0, n\3, (-1)^k*binomial(n, 3*k)^2)}

Formula

a(6*n+3) = 0 for n >= 0.

A119364 Central coefficients of number triangle A119335.

Original entry on oeis.org

0, 1, 1, 1, 11, 81, 351, 1149, 3529, 12601, 52724, 222641, 879308, 3295384, 12303201, 47320365, 186738507, 739129809, 2894481813, 11237844615, 43647142533, 170543919327, 669744238998, 2633027605209, 10337488816041, 40544676533466
Offset: 0

Views

Author

Paul Barry, May 16 2006

Keywords

Comments

A119363(n)-a(n)=A119365(n).

Formula

a(n)=sum{k=0..n-1, C(n+1,3k)*C(n-1,3k)}; a(n)=A119335(2n,n+1).
Showing 1-6 of 6 results.