cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119336 Expansion of (1-x)^4/((1-x)^6 - x^6).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 16, 45, 130, 341, 804, 1730, 3460, 6555, 12016, 21845, 40410, 77540, 155080, 320001, 669526, 1398101, 2884776, 5858126, 11716252, 23166783, 45536404, 89478485, 176565486, 350739488, 701478976, 1410132405, 2841788170
Offset: 0

Views

Author

Paul Barry, May 14 2006

Keywords

Comments

Row sums of A119335. Binomial transform of (1+x)/(1-x)^6.
Equals binomial transform of [1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, ...]. - Gary W. Adamson, Mar 14 2009

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^4/((1-x)^6-x^6),{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6},{1,2,3,4,5},40] (* Harvey P. Dale, Dec 25 2015 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n+1, 6*k+1))} \\ Seiichi Manyama, Mar 22 2019

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(k,3j)*C(n-k,3j).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5), with a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=5. - Harvey P. Dale, Dec 25 2015
a(n) = Sum_{k=0..floor(n/6)} binomial(n+1,6*k+1). - Seiichi Manyama, Mar 22 2019