A119374 A lower diagonal of pendular trinomial triangle A119369.
1, 3, 10, 36, 133, 501, 1918, 7440, 29180, 115522, 461044, 1852938, 7492846, 30464306, 124461782, 510696350, 2103708187, 8696498477, 36066269640, 150015248758, 625664295594, 2615929689642, 10962436020878, 46037427169060
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 16*(1+x)/( ((1+x^2) +Sqrt((1+x^2)^2-4*x*(1+x)))^3*(1+4*x+x^2 +Sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x))) ) )); // G. C. Greubel, Mar 16 2021 -
Mathematica
CoefficientList[Series[16*(1+x)/( ((1+x^2) +Sqrt[(1+x^2)^2 -4*x*(1+x)])^3*(1+4*x +x^2 +Sqrt[(1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x)])), {x,0,30}], x] (* G. C. Greubel, Mar 16 2021 *)
-
PARI
{a(n)=polcoeff(16*(1+x)/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n)))^3 /(1+4*x+x^2 + sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x)+x*O(x^n))),n)}
-
Sage
def A119374_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( 16*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2-4*x*(1+x)))^3*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x))) ) ).list() A119374_list(30) # G. C. Greubel, Mar 16 2021