cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A097341 a(n) = Sum_{k=0..floor(n/2)} Stirling2(n-k,k) * 2^k.

Original entry on oeis.org

1, 0, 2, 2, 6, 14, 38, 110, 342, 1134, 3990, 14830, 58006, 237998, 1021462, 4574318, 21325462, 103287598, 518768406, 2697426926, 14498316182, 80440333998, 460112203798, 2710038058862, 16418576767126, 102212840258094, 653247225514262, 4282249051881198
Offset: 0

Views

Author

Paul Barry, Aug 05 2004

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, 2^k*x^(2*k)/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Apr 09 2022
    
  • PARI
    a(n) = sum(k=0, n\2, 2^k*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 09 2022

Formula

a(n)=sum{k=0..floor(n/2), sum{i=0..k, (-1)^(k+i)i^(n-k)/(i!(k-i)!)}2^k }
G.f.: Sum_{k>=0} 2^k * x^(2*k)/Product_{j=1..k} (1 - j * x). - Seiichi Manyama, Apr 09 2022

A353262 Expansion of Sum_{k>=0} x^(2*k)/Product_{j=1..k} (1 - 3 * j * x).

Original entry on oeis.org

1, 0, 1, 3, 10, 36, 145, 666, 3466, 19956, 124111, 821601, 5755987, 42634089, 333827776, 2759262897, 24000288202, 218806121205, 2082848200057, 20639203885008, 212441617055458, 2268057343273491, 25085332185250564, 287096974919978292, 3395697093278589844
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[3^(n-2*k) * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/prod(j=1, k, 1-3*j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, 3^(n-2*k)*stirling(n-k, k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * Stirling2(n-k,k).

A119430 Expansion of Sum_{k>=0} 2^k*x^(2k)/Product_{j=1..k} (1 - j*2x).

Original entry on oeis.org

1, 0, 2, 4, 12, 40, 152, 640, 2928, 14400, 75744, 424640, 2527552, 15902848, 105313408, 731376640, 5311088896, 40233525248, 317296341504, 2600091120640, 22099119279104, 194487001540608, 1769555559897088, 16622286300921856
Offset: 0

Views

Author

Paul Barry, May 19 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[2^(n-k) * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 08 2022

Formula

a(n) = Sum_{k=0..n} S2(k,n-k)*2^k where S2(n,k)=A048993(n,k);
a(n) = Sum_{k=0..floor(n/2)} S2(n-k,k)*2^(n-k).

A353288 a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k) * Stirling2(n-k,k).

Original entry on oeis.org

1, 0, 1, 1, 2, 7, 30, 139, 723, 4487, 33551, 289854, 2774999, 29016343, 333139222, 4232908176, 59442337179, 912948755487, 15154215501815, 269933506466203, 5150440487875190, 105326085645729766, 2307425141636199329, 53998118146846356916, 1343998910355295080556
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/prod(j=1, k, 1-k*j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, k^(n-2*k)*stirling(n-k, k, 2));

Formula

G.f.: Sum_{k>=0} x^(2*k)/Product_{j=1..k} (1 - k * j * x).
Showing 1-4 of 4 results.