cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A171367 Antidiagonal sums of triangle of Stirling numbers of 2nd kind A048993.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 9, 22, 58, 164, 495, 1587, 5379, 19195, 71872, 281571, 1151338, 4902687, 21696505, 99598840, 473466698, 2327173489, 11810472444, 61808852380, 333170844940, 1847741027555, 10532499571707, 61649191750137, 370208647200165, 2278936037262610, 14369780182166215
Offset: 0

Views

Author

Paul Barry, Dec 06 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n<=m,
         `if`(n=m, 1, 0), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2023
  • Mathematica
    Table[Sum[StirlingS2[n-k, k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 18 2016 *)
  • Maxima
    makelist(sum(stirling2(n-k,k),k,0,n),n,0,60); /* Emanuele Munarini, Jun 01 2012 */
    
  • PARI
    a(n) = sum(k=0, n, stirling(n-k, k,2)); /* Joerg Arndt, Jan 16 2013 */

Formula

G.f.: 1/(1-x^2/(1-x/(1-x^2/(1-2x/(1-x^2/1-3x/(1-x^2/(1-4x/(1-x^2/(1-5x/(1-... (continued fraction).
G.f.: (G(0) - 1)/(x-1)/x where G(k) = 1 - x/(1-k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: T(0)/(1-x^2), where T(k) = 1-x^3*(k+1)/(x^3*(k+1)-(1-x*(x+k))*(1-x*(x+1+k))/T(k+1) ); (continued fraction, after P. Flajolet, p. 140). - Sergei N. Gladkovskii, Oct 30 2013
G.f. (alternating signs): Sum_{k>=0} S(x,k)*x^k, where S(x,k)*exp(-x) is the inverse Mellin transform of Gamma(s)*s^k. - Benedict W. J. Irwin, Oct 14 2016

A097342 a(n) = Sum_{k=0..floor(n/2)} Stirling2(n-k,k) * 3^k.

Original entry on oeis.org

1, 0, 3, 3, 12, 30, 93, 300, 1038, 3810, 14781, 60375, 258807, 1160949, 5435652, 26502555, 134282406, 705720549, 3840542031, 21608662710, 125523530724, 751831408929, 4637611255422, 29428408797852, 191907975348210
Offset: 0

Views

Author

Paul Barry, Aug 05 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS2[n-k,k]3^k,{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, May 24 2012 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, 3^k*x^(2*k)/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Apr 09 2022
    
  • PARI
    a(n) = sum(k=0, n\2, 3^k*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 09 2022

Formula

a(n)=sum{k=0..floor(n/2), sum{i=0..k, (-1)^(k+i)i^(n-k)/(i!(k-i)!)}3^k }
G.f.: Sum_{k>=0} 3^k * x^(2*k)/Product_{j=1..k} (1 - j * x). - Seiichi Manyama, Apr 09 2022

A353252 Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (j + 2 * x).

Original entry on oeis.org

1, 0, 2, 2, 8, 24, 100, 488, 2832, 19096, 147296, 1281392, 12422864, 132870368, 1554525152, 19750621216, 270817685568, 3986140113792, 62686410981696, 1048946532137216, 18608550117641728, 348854564104019072, 6891109834644748032, 143058034748452036352
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[2^k * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+2*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, 2^k*abs(stirling(n-k, k, 1)));

Formula

a(n) = Sum_{k=0..floor(n/2)} 2^k * |Stirling1(n-k,k)|.

A353260 Expansion of Sum_{k>=0} (-1)^k * x^(2*k)/Product_{j=1..k} (1 - j * x).

Original entry on oeis.org

1, 0, -1, -1, 0, 2, 5, 8, 6, -18, -111, -377, -953, -1567, 964, 23411, 133702, 554185, 1801323, 3910514, -2415952, -92788743, -700128734, -3842587204, -17042883146, -57693979779, -86308109341, 779904767601, 10180307035351, 78523141206142, 481780714913151
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (-1)^k*x^(2*k)/prod(j=1, k, 1-j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*stirling(n-k, k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k * Stirling2(n-k,k).

A353261 Expansion of Sum_{k>=0} (-2)^k * x^(2*k)/Product_{j=1..k} (1 - j * x).

Original entry on oeis.org

1, 0, -2, -2, 2, 10, 18, 10, -62, -310, -894, -1590, 642, 21514, 120322, 461130, 1230466, 877194, -16158974, -142301750, -798423166, -3397990646, -9764986878, 2009650762, 294960691330, 2788851766154, 18403159253250, 95083470290634, 350847712602498
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-2)^k * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (-2)^k*x^(2*k)/prod(j=1, k, 1-j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, (-2)^k*stirling(n-k, k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-2)^k * Stirling2(n-k,k).

A353287 a(n) = Sum_{k=0..floor(n/2)} k^k * Stirling2(n-k,k).

Original entry on oeis.org

1, 0, 1, 1, 5, 13, 56, 223, 1056, 5243, 28401, 163578, 1003332, 6506149, 44464510, 319066188, 2396942740, 18800878491, 153611297283, 1304600660023, 11495292868763, 104907727533628, 990067627794487, 9648859125705064, 96978616443859923
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, k^k*x^(2*k)/prod(j=1, k, 1-j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, k^k*stirling(n-k, k, 2));

Formula

G.f.: Sum_{k>=0} k^k * x^(2*k)/Product_{j=1..k} (1 - j * x).
Showing 1-6 of 6 results.