cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A097341 a(n) = Sum_{k=0..floor(n/2)} Stirling2(n-k,k) * 2^k.

Original entry on oeis.org

1, 0, 2, 2, 6, 14, 38, 110, 342, 1134, 3990, 14830, 58006, 237998, 1021462, 4574318, 21325462, 103287598, 518768406, 2697426926, 14498316182, 80440333998, 460112203798, 2710038058862, 16418576767126, 102212840258094, 653247225514262, 4282249051881198
Offset: 0

Views

Author

Paul Barry, Aug 05 2004

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, 2^k*x^(2*k)/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Apr 09 2022
    
  • PARI
    a(n) = sum(k=0, n\2, 2^k*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 09 2022

Formula

a(n)=sum{k=0..floor(n/2), sum{i=0..k, (-1)^(k+i)i^(n-k)/(i!(k-i)!)}2^k }
G.f.: Sum_{k>=0} 2^k * x^(2*k)/Product_{j=1..k} (1 - j * x). - Seiichi Manyama, Apr 09 2022

A124380 O.g.f.: A(x) = Sum_{n>=0} x^n*Product_{k=0..n} (1 + k*x).

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 57, 157, 453, 1368, 4296, 13995, 47138, 163779, 585741, 2152349, 8113188, 31326760, 123748871, 499539900, 2058542819, 8651755865, 37054078481, 161591063250, 717032333816, 3235298221401, 14834735654080, 69085973044125
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2006

Keywords

Comments

The Kn11 triangle sums of A094638 are given by the terms of this sequence. For the definitions of this and other triangle sums see A180662. [Johannes W. Meijer, Apr 20 2011]

Examples

			A(x) = 1 + x*(1+x) + x^2*(1+x)*(1+2x) + x^3*(1+x)*(1+2x)*(1+3x) +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[x^(2*k)*Pochhammer[1 + 1/x, k], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2024 *)
    Table[Sum[(-1)^k * StirlingS1[n+1-k, n+1-2*k], {k, 0, (n+1)/2}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 18 2024 *)
  • PARI
    a(n)=polcoeff(sum(k=0,n,x^k*prod(j=0,k,1+j*x+x*O(x^n))),n)

Formula

O.g.f.: A(x) = 1 + x*(1+x)/(G(0) - x*(1+x)) ; G(k) = 1+x*(k*x+x+1) - x*(k*x + 2*x + 1)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 02 2011
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - (1+x*k)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/(x*Q(0)-1)/x^4 + (1+x-x^3)/x^4, where Q(k)= 1 - x/(1 - (k+1)*x - x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
Conjecture: log(a(n)) ~ n*log(n)/2 - n*(1 + log(2))/2. - Vaclav Kotesovec, Sep 18 2024

A320964 a(n) = Sum_{j=0..n} Sum_{k=0..j} Stirling2(j - k, k).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 18, 40, 98, 262, 757, 2344, 7723, 26918, 98790, 380361, 1531699, 6434386, 28130891, 127729731, 601196429, 2928369918, 14738842362, 76547694742, 409718539682, 2257459567237, 12789959138944, 74439150889081, 444647798089246, 2723583835351856
Offset: 0

Views

Author

Peter Luschny, Nov 06 2018

Keywords

Comments

The row sums of A320955 seen as a triangle are the partial sums of the antidiagonal sums of the triangle of the Stirling set numbers.
Number of partitions of [n] into m blocks that are ordered with increasing least elements and where block m-j contains n-j (m in {0..n}, j in {0..m-1}). a(5) = 9: 12345, 1234|5, 123|4|5, 124|35, 12|3|4|5, 134|25, 13|24|5, 14|235, 1|2|3|4|5. - Alois P. Heinz, May 16 2023

Crossrefs

Row sums of A320955 seen as a triangle.

Programs

  • Maple
    ListTools:-PartialSums([seq(add(Stirling2(n-k, k), k=0..n), n=0..29)]);
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n>m,
          b(n-1, m)*m+b(n-1, m+1), `if`(n=m, 1, 0))
        end:
    a:= proc(n) a(n):= `if`(n=0, 0, a(n-1))+b(n, 0) end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2023
  • Mathematica
    a[n_] := Sum[Sum[StirlingS2[j - k, k], {k, 0, j}], {j, 0, n}]; Array[a, 30, 0] (* Amiram Eldar, Nov 06 2018 *)
    Table[Sum[StirlingS2[j-k,k],{j,0,n},{k,0,j}],{n,0,30}] (* Harvey P. Dale, May 15 2019 *)
  • PARI
    a(n)={sum(j=0, n, sum(k=0, j, abs(stirling(j-k, k, 2))))} \\ Andrew Howroyd, Nov 06 2018

A353260 Expansion of Sum_{k>=0} (-1)^k * x^(2*k)/Product_{j=1..k} (1 - j * x).

Original entry on oeis.org

1, 0, -1, -1, 0, 2, 5, 8, 6, -18, -111, -377, -953, -1567, 964, 23411, 133702, 554185, 1801323, 3910514, -2415952, -92788743, -700128734, -3842587204, -17042883146, -57693979779, -86308109341, 779904767601, 10180307035351, 78523141206142, 481780714913151
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (-1)^k*x^(2*k)/prod(j=1, k, 1-j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*stirling(n-k, k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k * Stirling2(n-k,k).

A353261 Expansion of Sum_{k>=0} (-2)^k * x^(2*k)/Product_{j=1..k} (1 - j * x).

Original entry on oeis.org

1, 0, -2, -2, 2, 10, 18, 10, -62, -310, -894, -1590, 642, 21514, 120322, 461130, 1230466, 877194, -16158974, -142301750, -798423166, -3397990646, -9764986878, 2009650762, 294960691330, 2788851766154, 18403159253250, 95083470290634, 350847712602498
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-2)^k * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (-2)^k*x^(2*k)/prod(j=1, k, 1-j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, (-2)^k*stirling(n-k, k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-2)^k * Stirling2(n-k,k).

A353262 Expansion of Sum_{k>=0} x^(2*k)/Product_{j=1..k} (1 - 3 * j * x).

Original entry on oeis.org

1, 0, 1, 3, 10, 36, 145, 666, 3466, 19956, 124111, 821601, 5755987, 42634089, 333827776, 2759262897, 24000288202, 218806121205, 2082848200057, 20639203885008, 212441617055458, 2268057343273491, 25085332185250564, 287096974919978292, 3395697093278589844
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[3^(n-2*k) * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/prod(j=1, k, 1-3*j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, 3^(n-2*k)*stirling(n-k, k, 2));

Formula

a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * Stirling2(n-k,k).

A357903 a(n) = Sum_{k=0..floor(n/3)} Stirling2(n - 2*k,k).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 4, 8, 17, 38, 89, 219, 567, 1543, 4400, 13094, 40507, 129874, 430731, 1476030, 5222544, 19066758, 71764369, 278166767, 1108986222, 4541765652, 19085377108, 82211094414, 362717859475, 1638071537802, 7567876937002, 35748311794246, 172558399424154
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, stirling(n-2*k, k, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k)/prod(j=1, k, 1-j*x)))

Formula

G.f.: Sum_{k>=0} x^(3*k)/Product_{j=1..k} (1 - j * x).

A357904 a(n) = Sum_{k=0..floor(n/4)} Stirling2(n - 3*k,k).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 2, 4, 8, 16, 33, 70, 153, 346, 814, 2000, 5138, 13776, 38395, 110695, 328638, 1001306, 3124626, 9978906, 32620854, 109225582, 374875483, 1319392590, 4761630252, 17610041358, 66668257846, 258018795970, 1019440760020, 4106982942054
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, stirling(n-3*k, k, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(4*k)/prod(j=1, k, 1-j*x)))

Formula

G.f.: Sum_{k>=0} x^(4*k)/Product_{j=1..k} (1 - j * x).

A353287 a(n) = Sum_{k=0..floor(n/2)} k^k * Stirling2(n-k,k).

Original entry on oeis.org

1, 0, 1, 1, 5, 13, 56, 223, 1056, 5243, 28401, 163578, 1003332, 6506149, 44464510, 319066188, 2396942740, 18800878491, 153611297283, 1304600660023, 11495292868763, 104907727533628, 990067627794487, 9648859125705064, 96978616443859923
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, k^k*x^(2*k)/prod(j=1, k, 1-j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, k^k*stirling(n-k, k, 2));

Formula

G.f.: Sum_{k>=0} k^k * x^(2*k)/Product_{j=1..k} (1 - j * x).

A353288 a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k) * Stirling2(n-k,k).

Original entry on oeis.org

1, 0, 1, 1, 2, 7, 30, 139, 723, 4487, 33551, 289854, 2774999, 29016343, 333139222, 4232908176, 59442337179, 912948755487, 15154215501815, 269933506466203, 5150440487875190, 105326085645729766, 2307425141636199329, 53998118146846356916, 1343998910355295080556
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/prod(j=1, k, 1-k*j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, k^(n-2*k)*stirling(n-k, k, 2));

Formula

G.f.: Sum_{k>=0} x^(2*k)/Product_{j=1..k} (1 - k * j * x).
Showing 1-10 of 11 results. Next