cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119440 Triangle read by rows: T(n,k) is the number of binary sequences of length n that start with exactly k 01's (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 2, 3, 1, 6, 2, 12, 3, 1, 24, 6, 2, 48, 12, 3, 1, 96, 24, 6, 2, 192, 48, 12, 3, 1, 384, 96, 24, 6, 2, 768, 192, 48, 12, 3, 1, 1536, 384, 96, 24, 6, 2, 3072, 768, 192, 48, 12, 3, 1, 6144, 1536, 384, 96, 24, 6, 2, 12288, 3072, 768, 192, 48, 12, 3, 1, 24576, 6144, 1536, 384, 96
Offset: 0

Views

Author

Emeric Deutsch, May 19 2006

Keywords

Comments

Row n contains 1+floor(n/2) terms.
Sum of entries in row n is 2^n (A000079).
T(n,0)=A098011(n+2). Except for a shift, all columns are identical.
G.f. of column k is x^(2k)*(1-x^2)/(1-2x).
Sum_{k=0..floor(n/2)} k*T(n,k) = A000975(n-1).

Examples

			T(6,2)=3 because we have 010100, 010110 and 010111.
Triangle starts:
   1;
   2;
   3,  1;
   6,  2;
  12,  3,  1;
  24,  6,  2;
  48, 12,  3,  1;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if 2*k+2<=n then 3*2^(n-2*k-2) elif n=2*k then 1 elif n=2*k+1 then 2 else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    nn=15;a=1/(1-y x^2);c=1/(1-2x);Map[Select[#,#>0&]&,CoefficientList[Series[1+x c+x^2 a c+x a +x^2y a+x^3y a c,{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Jan 03 2014 *)
    CoefficientList[CoefficientList[Series[(1 - x^2)/((1 - 2*x)*(1 - y*x^2)), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)

Formula

T(n,k) = 3*2^(n-2k-2) for n >= 2k+2; T(2k,k)=1; T(2k+1,k)=2.
G.f.: G(t,x) = (1-x^2)/((1-2*x)*(1-t*x^2)).