A119440 Triangle read by rows: T(n,k) is the number of binary sequences of length n that start with exactly k 01's (0 <= k <= floor(n/2)).
1, 2, 3, 1, 6, 2, 12, 3, 1, 24, 6, 2, 48, 12, 3, 1, 96, 24, 6, 2, 192, 48, 12, 3, 1, 384, 96, 24, 6, 2, 768, 192, 48, 12, 3, 1, 1536, 384, 96, 24, 6, 2, 3072, 768, 192, 48, 12, 3, 1, 6144, 1536, 384, 96, 24, 6, 2, 12288, 3072, 768, 192, 48, 12, 3, 1, 24576, 6144, 1536, 384, 96
Offset: 0
Examples
T(6,2)=3 because we have 010100, 010110 and 010111. Triangle starts: 1; 2; 3, 1; 6, 2; 12, 3, 1; 24, 6, 2; 48, 12, 3, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Maple
T:=proc(n,k) if 2*k+2<=n then 3*2^(n-2*k-2) elif n=2*k then 1 elif n=2*k+1 then 2 else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
-
Mathematica
nn=15;a=1/(1-y x^2);c=1/(1-2x);Map[Select[#,#>0&]&,CoefficientList[Series[1+x c+x^2 a c+x a +x^2y a+x^3y a c,{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Jan 03 2014 *) CoefficientList[CoefficientList[Series[(1 - x^2)/((1 - 2*x)*(1 - y*x^2)), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)
Formula
T(n,k) = 3*2^(n-2k-2) for n >= 2k+2; T(2k,k)=1; T(2k+1,k)=2.
G.f.: G(t,x) = (1-x^2)/((1-2*x)*(1-t*x^2)).
Comments